img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (5): 664-675.doi: 10.11872/j.issn.1005-2518.2022.05.169

• 矿产勘查与资源评价 • 上一篇    下一篇

青海赛坝沟金矿辉长岩地球化学组成及成因分析

邢佳1(),王建国1,2(),王志男1,胡建1,魏生云1   

  1. 1.青海大学地质工程系,青海 西宁 810016
    2.矿物加工科学与技术国家重点实验室,北京 102628
  • 收稿日期:2021-11-17 修回日期:2022-06-19 出版日期:2022-10-31 发布日期:2022-12-10
  • 通讯作者: 王建国 E-mail:1779823777@qq.com;lywjg467047@126.com
  • 作者简介:邢佳(1996-),男,山西广灵人,硕士研究生,从事成矿预测、资源勘查及地球化学研究工作。1779823777@qq.com
  • 基金资助:
    国家自然科学基金项目“基于微观层面分析的岩矿电阻率耦合机理及其模型:以查藏错铜铅锌矿床为例”(42164007);青海省应用基础研究计划项目“柴北缘地区铍矿床成矿约束条件、地质意义及靶区优选”(2019-ZJ-7022);矿物加工科学与技术国家重点实验室开放基金项目“典型金属矿物标型特征及其对可选性的影响”(BGRIMM-KJSKL-2020-04)

Geochemical Composition and Genetic Analysis of Gabbro of Saibagou Gold Deposit,Qinghai Province

Jia XING1(),Jianguo WANG1,2(),Zhinan WANG1,Jian HU1,Shengyun WEI1   

  1. 1.Department of Geological Engineering, Qinghai University, Xining 810016, Qinghai, China
    2.State Key Laboratory of Mineral Processing Science and Technology, Beijing 102628, China
  • Received:2021-11-17 Revised:2022-06-19 Online:2022-10-31 Published:2022-12-10
  • Contact: Jianguo WANG E-mail:1779823777@qq.com;lywjg467047@126.com

摘要:

赛坝沟金矿是位于柴北缘乌兰—都兰战略性金属矿集区的中型金矿床之一,金矿床的形成受断裂系统的严格控制,矿体大多赋存于NW向脆—韧性剪切带内的英云闪长岩和辉长岩中,呈细脉状、分支脉状、不规则状和透镜状产出。赛坝沟金矿区出露的岩浆岩绝大多数为辉长岩类和花岗岩类,其中辉长岩与矿体在产出位置上表现出密切的空间相关性,且在矿区内发育的各类岩浆岩中,辉长岩的金含量远高于其他类型的岩浆岩,对其开展全岩元素分析显得尤为必要。分析结果显示:赛坝沟金矿区的辉长岩以碱性和亚碱性辉长岩为主,岩石全碱含量较高,Na、Al、Sr元素以及轻稀土元素(LREE)相对富集,Nb和Ti等稀有元素相对亏损。综合金矿地球化学特征分析,认为该矿区岩石岩浆起源为岩石圈地幔,在上涌过程中下地壳发生了底侵作用,促使深部初始岩浆房的形成,并在后续侵位到地壳浅部的演化过程中经历了一定程度的同化混染作用和较强的分离结晶作用。

关键词: 岩石圈地幔, 地球化学, 辉长岩, 岩石成因, 岩浆起源, 赛坝沟金矿, 青海省

Abstract:

The Saibagou gold deposit is one of the medium-size gold deposits located in the Wulan-Dulan strategic metallic ore concentration area in northern Qaidam Basin.The regional tectonic location spans the Tanjianshan magmatic arc,ophiolite melange in the northern Qaidam Basin and Olongbulak microcontinent,and is located at the intersection of Wahongshan-Wenquan fracture and Yuka-Wulan fracture.The formation of the deposit is strictly controlled by the fracture structure.There are two groups of fracture belts in the mining area,namely the NW trending thrust fracture and the NE trending shift fracture,and the gold orebody are mainly developed in the NW brittle-ductile shearing belt in veins,irregular,branched veins and lenticular.The main ore types are structural altered rock type and quartz vein type.Magmatism in the mining area is strong,and the active ages mainly include Late Variscan-Indosinian and Neoproterozoic,especially the Variscan magmatic activity is the most significant.Magmatic rocks exposed in the mining area are mainly gabbro and granite,in which gabbro and ore body have close spatial correlation.The magmatic rock samples used in this study were all taken from fresh gabbro after stripping regolith around the orebody of Saibagou gold deposit.The element analysis of the whole rock was conducted by the Qinghai Nuclear Industry Geological Bureau,including the detection of major elements,trace elements and rare earth elements.The results show that all gabbro in Saibagou gold deposit are tholeiite basalt,mainly alkaline gabbro and subalkaline gabbro,most of which are calcalkaline series or low potassium (tholeiite) series gabbro,and a small amount of shoshonite series gabbro exist.Gabbros are characterized by high total alkali content,enrichment of Na,Al and light rare earth elements,strong enrichment of large ion lithophile elements Sr,and depletion of high field strength elements Nb and Ti.Through in-depth analysis and comparison of the La/Nb and Zr/Ba values,Hake diagram,Rb/Y-Nb/Y ratio diagram,La-La/Sm diagram,La/Yb-Nb/Ta diagram and Th/Nb-Ce/Nb diagram of gabbro in Saibaigou gold deposit,it is determined that the gabbro primary magma of Saibagou gold deposit originated from the lithospheric mantle magma which experienced fractional crystallization,assimilation and contamination,and partial melting during the the process of ascending and invaded,and intruded into the shallow crust to form gabbro primitive magma.

Key words: lithospheric mantle, geochemistry, gabbro, petrogenesis, magmatic origin, Saibagou gold deposit, Qinghai Province

中图分类号: 

  • P618.51

图1

赛坝沟区域矿床分布图(据唐名鹰等,2021修改)1.第四系;2.沙柳河高压—超高压变质岩;3.滩间山群;4.蛇绿混杂岩;5.中奥陶世花岗岩;6.早志留世花岗岩;7.早石炭世花岗岩;8.中—晚泥盆世牦牛山组;9.辉长岩;10.斜长角闪岩;11.变粉砂岩;12.断层及糜棱岩带;13.地质界线"

图2

柴北缘大地构造位置图(据唐名鹰等,2021修改)"

图3

赛坝沟金矿地质图(据唐名鹰等,2021修改)1.第四系;2.斜长角闪岩;3.英云闪长岩;4.石英闪长岩;5.辉长岩;6.花岗斑岩;7.二长闪长玢岩;8.闪长岩脉;9.地质界限;10.断层及推测断层;11.逆断层;12.碎裂岩化蚀变破碎带;13.金矿体;14.采样点"

图4

辉长岩样品及镜下照片(a)、(b)赛坝沟金矿发育绿泥石化的块状构造辉长岩;(c)、(d)赛坝沟金矿辉长岩显微镜照片Cal-粒状方解石;Hb-长柱状角闪石;Pl-板状斜长石;Q-他形晶粒状石英;Py-黄铁矿;Lm-褐铁矿"

表1

辉长岩主量成分分析结果"

组分样品编号及分析结果/%
SBG-1SBG-2SBG-3SBG-4SBG-5SBG-6SBG-7SBG-8SBG-9
SiO246.9846.2045.3550.8952.2348.0444.1245.0147.46
TiO20.370.120.610.360.381.180.810.631.61
Al2O313.1215.2816.1713.8914.6411.5717.6715.0612.12
TFe2O311.125.9711.9710.7811.289.8513.4310.4315.19
MnO0.180.130.130.190.180.180.220.170.23
MgO9.5313.914.985.095.9010.486.169.156.42
CaO11.3514.0117.3210.278.1512.0211.6410.377.20
Na2O1.180.891.521.181.581.831.742.332.64
K2O0.300.570.080.220.162.160.240.570.44
P2O50.020.010.080.070.070.500.160.120.15
SO30.020.010.010.020.010.050.370.010.09
LOI5.822.891.807.045.422.163.436.166.45
Total99.9999.99100.02100.00100.00100.0299.99100.01100.00

图5

全碱—硅(TAS)分类图(Middlemost,1994)1-橄榄辉长岩;2a-碱性辉长岩;2b-亚碱性辉长岩;3-辉长闪长岩;4-闪长岩;5-花岗闪长岩;6-花岗岩;7-硅英岩;8-二长辉长岩;9-二长闪长岩;10-二长岩;11-石英二长岩;12-正长岩;13-副长石辉长岩;14-副长石二长闪长岩;15-副长石二长正长岩;16-副长正长岩;17-副长深成岩;18-霓方钠岩/磷霞岩/粗白榴岩"

图6

Nb/Y-Zr/ P2O5图解(Miyashiro,1974)和硅钾图解(Artiola,1994)"

表2

辉长岩微量元素分析结果"

组分样品编号及分析结果/(×10-6
SBG-1SBG-2SBG-3SBG-4SBG-5SBG-6SBG-7SBG-8SBG-9
Rb7.6039.900.908.308.70148.004.308.005.40
K2 5004 6007001 8001 20017 7001 9004 8003 700
Ba182.50108.0019.2077.4043.601 25092.60105.5080.10
Th0.530.160.520.450.5912.600.971.370.54
U0.330.050.640.120.154.000.270.200.35
Nb0.400.302.501.101.2016.303.601.404.90
Sr5551879772752971 105534300135
P90303402903002 090730520640
Zr1444415154842349112
Hf0.400.101.100.500.5010.500.901.302.90
Ti2 1207003 6102 0802 1806 8504 6103 7609 360
Y7.804.4015.9011.2011.7035.1020.7018.8037.60
Yb0.860.461.591.271.222.72.011.743.76
Lu0.140.070.250.210.210.400.300.260.57
Zn4437386769979571118
Sc49.7035.0023.7045.5044.5029.2042.5039.2045.60
Cr3401 630200801006202053040
Co45.6035.6020.5026.0028.4033.0038.3044.3047.70
Cd0.030.040.090.090.050.120.080.080.09
Ag0.010.010.010.010.010.010.030.010.16
Be0.110.050.520.230.363.190.330.380.42
As4.902.002.504.406.503.503.303.804.00
Bi0.020.091.150.040.030.210.040.020.01
Cu125.501.503.30109.50157.0045.50154.507.00147.00
Ga11.5510.0527.7014.3513.5018.1521.3014.9019.50
Ge0.200.180.180.160.160.320.250.300.27
In0.0430.0220.1000.0580.0510.0840.0730.0570.097
Mo0.520.321.700.460.780.450.540.230.29
Zr/Ba0.0760.0372.290.200.340.380.250.461.40

图7

微量元素原始地幔标准化蛛网图"

表3

辉长岩稀土元素分析结果"

组分样品编号及分析结果/(×10-6
SBG-1SBG-2SBG-3SBG-4SBG-5SBG-6SBG-7SBG-8SBG-9
La3.000.904.604.406.5069.609.107.406.20
Ce6.001.709.309.3011.70155.0021.7017.1017.00
Pr0.780.191.331.061.2419.602.842.172.49
Nd3.400.906.604.705.5078.1013.309.7012.80
Sm0.940.351.941.311.3514.953.492.584.13
Eu0.350.210.750.470.443.221.050.831.49
Gd1.110.532.331.721.7711.403.452.685.46
Tb0.190.100.410.280.291.500.570.470.95
Dy1.280.682.551.721.887.163.472.916.11
Ho0.290.160.60.390.421.290.730.641.31
Er0.850.461.731.241.153.282.031.853.91
Tm0.130.070.260.190.180.470.300.270.60
Yb0.860.461.591.271.222.702.011.743.76
Lu0.140.070.250.210.210.400.300.260.57
∑REE19.326.7834.2428.2633.85368.6764.3450.6066.78
LREE14.474.2524.5221.2426.73340.4751.4839.7844.11
HREE4.852.539.727.027.1228.2012.8610.8222.67
LREE/HREE2.981.682.523.033.7512.074.003.681.95
LaN/YbN2.361.321.962.343.6017.423.062.871.11
&Eu1.051.491.080.960.870.730.910.960.96
&Ce0.900.930.870.990.910.970.990.991.01

图8

稀土元素球粒陨石标准化分布模式图"

图9

Rb/Y-Nb/Y比值图解(Duan et al.,2017)"

图10

La-La/Sm图解、La/Yb-Nb/Ta图解和Th/Nb-Ce/Nb图解(肖福权等,2021)"

图11

哈克图解"

Artiola J F,1994.Using geochemical data:Evaluation,presentation,interpretation[J].Soil Science,158(5):352-381.
Depaolo D J, Daley E E,2000.Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension[J].Chemical Geology,169(1/2):157-185.
Duan L A, Gu H L, Yang X Y,2017.Geological and geochemical constraints on the newly discovered Yangchongli gold deposit in Tongling region,Lower Yangtze metallogenic belt[J].Acta Geologica Sinica (English Edition),91(6):2078-2108.
Feng Chengyou, Zhang Dequan, Li Daxin,et al,2002.Geological characteristics and ore-forming age of the Saibagou gold deposit,Qinghai Province[J].Mineral Deposits,21(1):45-52.
Fu Qingyuan, Li Baolin,1998.Metallogenetic features and ore-controllinc conditions of Saibagou gold deposit,Qinghai[J].Qinghai Geology,(1):43-49.
Guo Xiyun,2021.The chronology and geochemical research on gabbro of Late Jurassic-Early Cretaceous in Chaokwula area,southern part of Hinggan Mountains[J].Geological Review,67(3):787-802.
He Pengli, Huang Xiaolong, Yang Fan,et al,2020.Petrogenesis and tectonic setting of the Xiaoharajunshan titanomagnetite-rich gabbro,West Tianshan orogen[J].Acta Petrologica Sinica,36(7):2001-2016.
Hoskin P W O, Kinny P D, Wyborn D,et al,2000.Identifying accessory mineral saturation during differentiation in granitoid magmas:An integrated approach[J].Journal of Petrology,41(9):1365-1396.
Liao Yubin, Li Bile, Sun Yonggang,et al,2020.U-Pb dating,zircon U-Pb age,petrochemistry and Hf isotope characteristics of gabbro in Xitieshan Pb-Zn mining area in northern margin of Qaidam Basin[J].Global Geology,39(3):495-508.
Liu Fei, Li Guanlong, Bo Rongzhong,et al,2021.Spreading ridge subduction of Bangong-Nujiang Ocean:Evidence from geochemistry and Sr-Nd isotopic of middle Jurassic gabbro dikes in the Zongbai accretionary comple[J].Geological Bulletin of China,40(8):1247-1264.
Liu Yiming, Li Cai, Li Sanzhong,et al,2018.The Early Cretaceous Duguer metagabbro from Qiangnan-Baoshan block,Tibet Plateau:Implications for the subduction and closure of Bangong Co-Nujiang Ocean[J].Geological Bulletin of China,37(8):1450-1463.
Liu Z, Shao Y, Wang C,et al,2019.Genesis of the Dongguashan skarn Cu-(Au) deposit in Tongling,Eastern China:Evidence from fluid inclusions and HOS-Pb isotopes[J].Ore Geology Reviews,104:462-476.
Ma Cheng, Song Yiwei, Sun Biao,et al,2021.Geochemical characteristics and geological significance of Minxian-Lixian Metallogenic Belt,western Qinling Region[J].Gold Science and Technology,29(4):489-499.
MacDonald R, Rogers N W, Fitton J G,et al,2001.Plume-lithosphere interactions in the generation of the basalts of the Kenya Rift,East Africa[J].Journal of Petrology,42(5):877-900.
Middlemost E A K,1994.Naming materials in the magma/igneous rock system[J].Earth-science Reviews,37(3/4):215-224.
Miyashiro A,1974.Volcanic rock series in island arcs and active continental margins[J].American Journal of Science,274(4):321-355.
Ren Wenxiu, Huang Zengbao, Wang Jun,et al,2020.Zircon U-Pb ages based on LA-ICP-MS and its tectonic significance in the Yushishan ophiolite melange[J].Journal of Lanzhou University(Natural Sciences),56(5):690-699,710.
Shi K, Yang X, Du J,et al,2020.Geochemical study of cretaceous magmatic rocks and related ores of the Hucunnan Cu-Mo deposit:Implications for petrogenesis and poly-metal mineralization in the Tongling ore-cluster region[J].Minerals,10(2):107-132.
Sun S S, Mcdonough W F.1989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J].Geological Society London Special Publications,42(1):313-345.
Tang Mingying, He Zongwei, Zhu Dequan,et al,2021.S and Pb isotopic compositions in Saibagou gold deposit on north margin of Qaidam Basin:An indication to the source of metallogenic materials[J].Mineral Deposits, 40(1):117-127.
Tang Mingying, Peng Yonghe, Zhu Dequan,et al,2016.Characteristics of primary haloes of the Ⅳ-3 vein and deep ore-body prediction of the Saibagou gold deposit in Qinghai Province[J].Geophysical and Geochemical Exploration,40(3):475-481.
Taylor S R, Mclennan S M.1985.The Continental Crust:Its Composition and Evolution[M].Oxford:Blackwell.
Tong Haikui, Zhang Shungui, Xu Guowu,et al,2009.Characteristics and genesis of ductile shear zone related gold deposits in Saibagou of Wulan County[J].Northwestern Geology,42(1):88-94.
Xiao Fuquan, Huang Jiejie, Chen Zhiyong,et al,2021.Geoche-mical characteristics and genesis of magmatic rocks in Yan-gchongli gold deposit,Tongling ore concentration area,Anhui Province[J].Journal of Geology,45(3):230-239.
Xie Jiancheng, Yang Xiaoyong, Xiao Yilin,et al,2012.Petrogenesis of the Mesozoic intrusive rocks from the Tongling ore cluster region:The metallogenic significance[J].Acta Geologica Sinica,86(3):423-459.
Xing Fengming, Xu Xiang,1995.The essentail features of magmatic rocks along the Yangtze river in Anhui Province[J].Acta Petrologica Sinica,11(4):409-422.
Yu Junpeng, Wang Huaitao, Wang Yuxi,et al,2021.Geochrono-logy and geochemistry of Tanshanzidong olivine-gabbro in Beishan area,Gansu Province,and its geological significa-nce[J].Acta Petrologica et Mineralogica,40(2):202-216.
Zhang Baoyue, Sun Jianjun, Luo Xiong,et al,2019.Data analysis of major and trace elements of gabbro clinopyroxene from different tectonic settings[J].Earth Science Frontiers,26(4):33-44.
Zhang Yuyu, Wang Qimeng, Ren Ruipeng,et al,2018.Metallogenic geological characteristics and prospecting direction of the Saibagou area in Wulan County,Qinghai Province[J].North China Geology, 41(3):191-197.
丰成友,张德全,李大新,等,2002.青海赛坝沟金矿地质特征及成矿时代[J].矿床地质,21(1):45-52.
付青元,李宝林,1998.赛坝沟金矿成矿特征及控矿条件[J].青海地质,(1):43-49.
郭喜运,2021.大兴安岭南段朝克乌拉地区晚侏罗世—早白垩世辉长岩年代学和地球化学研究[J].地质论评,67(3):787-802.
贺鹏丽,黄小龙,杨帆,等,2020.西天山小哈拉军山富钛磁铁矿辉长岩的岩石成因及其构造环境[J].岩石学报,36(7):2001-2016.
廖宇斌,李碧乐,孙永刚,等,2020.柴达木盆地北缘锡铁山铅锌矿区辉长岩锆石U-Pb年代、岩石地球化学和Hf同位素特征[J].世界地质,39(3):495-508.
刘飞,李观龙,薄容众,等,2021.班公湖—怒江洋的扩张脊俯冲:宗白增生杂岩中侏罗世辉长岩脉地球化学和Sr-Nd同位素特征[J].地质通报,40(8):1247-1264.
刘一鸣,李才,李三忠,等,2018.青藏高原羌南—保山板块都古尔地区早白垩世变质辉长岩:对班公湖—怒江洋俯冲闭合的制约[J].地质通报,37(8):1450-1463.
马承,宋伊圩,孙彪,等,2021.西秦岭岷礼成矿带地球化学特征及其地质意义[J].黄金科学技术,29(4):489-499.
任文秀,黄增保,王军,等,2020.东天山玉石山蛇绿混杂岩带辉长岩LA-ICP-MS锆石U-Pb年龄及其构造意义[J].兰州大学学报(自然科学版),56(5):690-699,710.
唐名鹰,何宗围,朱德全,等,2021.柴北缘赛坝沟金矿床硫、铅同位素组成:对成矿物质来源的指示[J].矿床地质, 40(1):117-127.
唐名鹰,彭永和,朱德全,等,2016.青海赛坝沟金矿床Ⅳ-3号矿体原生晕特征与深部预测[J].物探与化探,40(3):475-481.
童海奎,张顺桂,许国武,等,2009.乌兰县赛坝沟韧性剪切带型金矿特征及成因[J].西北地质,42(1):88-94.
肖福权,黄杰杰,陈志永,等,2021.安徽铜陵矿集区杨冲里金矿岩浆岩地球化学特征与成因[J].地质学刊,45(3):230-239.
谢建成,杨晓勇,肖益林,等,2012.铜陵矿集区中生代侵入岩成因及成矿意义[J].地质学报,86(3):423-459.
邢凤鸣,徐祥,1995.安徽沿江地区中生代岩浆岩的基本特点[J].岩石学报,11(4):409-422.
余君鹏,王怀涛,王玉玺,等,2021.甘肃北山炭山子东橄榄辉长岩年代学、地球化学特征及其地质意义[J].岩石矿物学杂志,40(2):202-216.
张玉瑜,王启蒙,任瑞鹏,等,2018.青海省乌兰县赛坝沟地区金成矿地质特征及找矿方向[J].地质调查与研究, 41(3):191-197.
章宝月,孙建鹍,罗熊,等,2019.三类构造背景辉长岩单斜辉石主量元素和微量元素的数据分析研究[J].地学前缘,26(4):33-44.
[1] 王建国,张世珍,邢佳,王志男,魏生云,胡建. 乌兰茶卡北山含矿伟晶岩地球化学特征及地质意义[J]. 黄金科学技术, 2022, 30(6): 809-821.
[2] 符安宗,余欣朗,李成禄,杨文鹏,杨元江,郑博,赵瑞君. 元素比值在嫩江—黑河地区金成矿预测的应用初探[J]. 黄金科学技术, 2022, 30(6): 822-834.
[3] 张玉鹏,史冬岩,吕明奇,李成禄,张坤,唐伟. 岩屑地球化学测量在黑龙江省三道湾子浅覆盖区的找矿应用效果[J]. 黄金科学技术, 2022, 30(5): 651-663.
[4] 刘永乐,张爱奎,刘智刚,孙非非,何书跃,张大明,奎明娟,张建平. 青海东昆仑西段金矿成因类型及成矿模式[J]. 黄金科学技术, 2022, 30(4): 483-497.
[5] 胡宝群,高海东,王运,张宝林,吕古贤,申玉科,郭涛. 玲珑金矿田含矿断裂的基岩地球化学特征及找矿潜力评价[J]. 黄金科学技术, 2022, 30(4): 518-531.
[6] 何金霖, 李俊, 许慧玲, 曹李慧, 孙德华. 山东曹家洼金矿石头顶矿段土壤地球化学特征及找矿预测[J]. 黄金科学技术, 2022, 30(2): 179-195.
[7] 陈振, 王翠芝, 吕古贤, 张宝林, 张启鹏, 魏竣滨, 史晓鸣. 柴胡栏子金矿黄铁矿的化学成分标型特征及其矿床学意义[J]. 黄金科学技术, 2022, 30(2): 165-178.
[8] 张宇,魏俊浩,石文杰,李国猛,周新琪,毛国正,刘成林. 藏南康马县布主金(锑)矿土壤地球化学异常信息提取及成矿预测[J]. 黄金科学技术, 2022, 30(1): 1-18.
[9] 冼源宏,詹华思,李健唐. 广东怀集地区矽卡岩型铁多金属矿床同位素地球化学特征及其地质意义[J]. 黄金科学技术, 2021, 29(6): 805-816.
[10] 马承,宋伊圩,孙彪,王占彬. 西秦岭岷礼成矿带地球化学特征及其地质意义[J]. 黄金科学技术, 2021, 29(4): 489-499.
[11] 范红科,郭根明,董波波,张凯,刘豫新. 新疆焉耆县松树达坂金矿区岩石地球化学异常特征及找矿效果[J]. 黄金科学技术, 2021, 29(4): 477-488.
[12] 李松涛,刘建中,夏勇,谢卓君,谭亲平,王泽鹏,周光红,杨成富,蒙明华,谭礼金,汪小勇,李俊海,徐良易,王大富. 黔西南卡林型金矿聚集区构造地球化学弱矿化信息提取方法及其应用研究[J]. 黄金科学技术, 2021, 29(1): 53-63.
[13] 鞠培姣. 太行山北段梨园金矿构造地球化学特征[J]. 黄金科学技术, 2021, 29(1): 64-73.
[14] 刘铭,王仔章. 青海省都兰县丘吉东沟金矿水系沉积物地球化学特征及找矿远景[J]. 黄金科学技术, 2020, 28(6): 837-845.
[15] 段启超, 庞绪成, 纵瑞, 韩迪, 张岩, 张鑫. 河南省灵宝市董家埝银矿原生晕特征及地质意义[J]. 黄金科学技术, 2020, 28(4): 497-508.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 闫杰, 覃泽礼, 谢文兵, 蔡邦永. 青海南戈滩—乌龙滩地区多金属地质特征与找矿潜力[J]. J4, 2010, 18(4): 22 -26 .
[2] 宋贺民, 冯喜利, 丁宪华. 太行山北段交界口矿区地质地球化学特征及找矿方向[J]. J4, 2010, 18(3): 54 -58 .
[3] 李淑芳, 于永安, 朝银银, 王美娟, 张岱, 刘君, 孙亮亮. 在辽东成矿带找寻层控型金矿床靶区[J]. J4, 2010, 18(3): 59 -62 .
[4] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[5] 陈学俊. 青海直亥买休玛金矿床矿体特征与找矿前景分析[J]. J4, 2010, 18(4): 50 -53 .
[6] 崔廷军, 逯克思, 庄勇, 傅星. 青海省柴达木盆地南缘金成矿带特征及成矿规律浅析[J]. J4, 2010, 18(3): 63 -67 .
[7] 杨明荣, 牟长贤. 原子荧光法测定化探样品中砷和锑的不确定度评定[J]. J4, 2010, 18(3): 68 -71 .
[8] 苏建华, 陆树林. 从高酸低浓度尾液中萃取金的试验[J]. J4, 2010, 18(3): 72 -75 .
[9] 王大平, 宋丙剑, 韦库明. 大功率激电测量在辽宁北水泉寻找隐伏矿床的应用[J]. J4, 2010, 18(3): 76 -78 .
[10] 刘胜光, 高海峰, 黄锁英. 电子手薄在山东焦家金矿地质专业中的应用[J]. J4, 2010, 18(3): 79 -82 .