img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (3): 414-426.doi: 10.11872/j.issn.1005-2518.2022.03.130

• 采选技术与矿山管理 • 上一篇    

基于RHT模型双孔同时爆破均质岩体损伤的数值模拟

王卫华(),刘洋(),张理维,张恒根   

  1. 中南大学资源与安全工程学院,长沙 410083
  • 收稿日期:2021-09-17 修回日期:2022-03-10 出版日期:2022-06-30 发布日期:2022-09-14
  • 通讯作者: 刘洋 E-mail:xhaiyz@163.com;1137510136@qq.com
  • 作者简介:王卫华(1976-),男,湖南长沙人,教授,从事岩体动力学、爆破及安全工程研究工作。xhaiyz@163.com
  • 基金资助:
    国家自然科学基金项目“高应力硬岩硐室板裂致灾机制及其风险控制支护方法”(51874354)

Numerical Simulation of Homogeneous Rock Mass Damage Caused by Two-hole Simultaneous Blasting Based on RHT Model

Weihua WANG(),Yang LIU(),Liwei ZHANG,Henggen ZHANG   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2021-09-17 Revised:2022-03-10 Online:2022-06-30 Published:2022-09-14
  • Contact: Yang LIU E-mail:xhaiyz@163.com;1137510136@qq.com

摘要:

为探究双孔爆破时炮孔间距和额外自由面对爆破过程中爆破损伤的影响,基于RHT(Riedel-Hiermaier-Thoma)损伤本构建立了多组三维数值模型,利用模型损伤云图研究不同爆破条件下的岩石爆破过程,通过自定义变量—有效损伤率的变化探究炮孔周围岩石损伤的时空演化过程。结果表明:随着炮孔间距的增加,岩石有效损伤率逐渐递减,相同截面处的有效损伤率在炮孔间距最小的方案中最大,相邻炮孔间的爆破能量叠加作用随炮孔间距的增大而减弱,合适的炮孔间距可以获得更加理想的爆破效果;岩石有效损伤率随着自由面到炮孔中心处距离的增大而逐渐减小,爆破能量倾向于向自由面方向传播,额外自由面对爆破能量分布的影响随自由面与炮孔间距的增大而减弱。数值模拟结果对研究双孔爆破能量的传递法则具有一定的借鉴意义。

关键词: 双孔爆破, 数值模拟, RHT模型, 炮孔间距, 自由面, 岩石有效损伤率

Abstract:

Due to the complex nature of rock mass and the different transfer modes of explosive energy,it is difficult to control the blasting process and blasting effect.After blasting,the damage of rock mass around blast holes is related to the bearing capacity and stability of the project.In order to explore the influence of blast hole spacing and additional free surface on the blasting process and effect during double-hole blasting,a double-hole blasting model was established based on RHT (Riedel Hiermaier Thoma) damage constitutive model by using LS-DYNA finite element software to simulate rock blasting damage under different working conditions.The experiment of previous scholars was repeated by numerical simulation,and the test results were compared with the numerical simulation results in this paper to verify the feasibility of the numerical simulation method and the rationality of the selection of material parameters.Through the comparative analysis between numerical simulation results and blasting experimental results,it is determined that the rock blasting damage threshold applicable to this paper is 0.5 based on the blasting mechanism,and the rock damage value greater than 0.5,which is called the effective damage of rock.The effective damage rate of rock is defined as the proportion of the effective damage range of rock in the plane damage cloud map to the total plane area.The change of effective damage rate of rock is used to intuitively show the temporal and spatial evolution law of rock damage in the blasting process.The rock damage nephograms at different times were intercepted to observe the damage in different directions of the rock after blasting.The damage nephograms were processed by LS-PrePost to obtain the distribution range of effective damage on the plane.Then,the MATLAB program was used to calculate the effective damage rate,and the numerical calculation and analysis were carried out.The results show that the effective damage rate of rock decreases with the increase of blast hole spacing,and the effective damage rate at the same section is the largest in the scheme with the smallest blast hole spacing.The superposition effect of blasting energy between adjacent blastholes decreases with the increase of blast hole spacing,and a more ideal blasting effect can be obtained with an appropriate blast hole spacing.The effective damage rate of rock decreases gradually with the increase of the distance between the free surface and the center of the blast hole,and the blasting energy tends to propagate to the free surface.The influence of additional free surface on the distribution of blasting energy decreases with the increase of the distance between the free surface and the blast hole.

Key words: double-hole blasting, numerical simulation, RHT model, hole spacing, free surface, effective damage rate of rock

中图分类号: 

  • TD235

表1

岩石RHT模型基本参数"

参数符号参数名称取值
RO密度/(kg·m-32 660
FS*相对抗剪强度/MPa0.21
FT*相对抗拉强度/MPa0.04
SHEAR弹性剪切模量/GPa21.9
FC单轴抗压强度/MPa167.8
D1损伤系数0.04
D21
EOC参考压缩应变率3.0E-5
EOT参考拉伸应变率3.0E-6
EC失效压缩应变率3.0E+25
ET失效拉伸应变率3.0E+25
BETAC压缩应变率指数0.0074
BETAT拉伸应变率指数0.0104
A失效面参数2.51
N0.72
Q0拉—压子午比参数0.68
B罗德角相关系数0.05
GC*压缩屈服面参数0.53
GT*拉伸屈服面参数0.7
PFT压缩对拉伸塑性流动的影响0.001
EPSF侵蚀塑性应变2.0
XI剪切模量衰减系数0.5
EPM最小失效应变0.015
AF残余强度面参数0.25
NF0.62
ALPHA初始空隙率1.08
NP孔隙度指数3.0
PEL压碎压力/MPa115.4
PCO压实压力/GPa6
GAMMA状态方程参数(体积压缩)/GPa0.0
A136.22
A253.22
A323.15
B0状态方程参数1.22
B11.22
T1状态方程参数(体积膨胀)/GPa36.22
T20.0

表2

炸药材料参数"

参数取值参数取值
Ρ/(kg·m-31 300R14.2
D/(m·s-14 000R20.9
A/kPa2 14.4ω0.15
B/kPa0.182E0/kPa4.192

表3

空气材料参数"

参数取值参数取值
ρ/(kg·m-31.29C40.4
C00C50.4
C10C60
C20E0/kPa2.5
C30

图1

数值模拟与模型试验结果对比"

图2

离炮孔壁不同距离处的岩石峰值压力"

图3

不同损伤程度岩石分布范围"

图4

炮孔装填结构与双孔爆破数值模型示意图(炮孔间距为0.6 m)"

图5

双孔爆破典型时刻损伤云图"

图6

不同孔间距下双孔爆破各方案最终岩石损伤分布图"

图7

双孔爆破“切片”示意图(以炮孔间距0.6 m为例)"

图8

各方案在X1和X2方向的径向有效损伤率"

图9

存在2个自由面的炮孔装填结构与双孔爆破数值模型示意图(炮孔距自由面 0.6 m)"

图10

典型时刻岩石的损伤云图"

图11

各方案爆后空腔"

图12

各方案在Y1和Y2方向的径向有效损伤率"

Bai Yu, Zhu Wancheng, Wei Chenhui,et al,2013.Numerical simulation of double hole blasting under different in-situ stress conditions [J] .Geotechnical mechanics,14(Supp.1):466-471.
Banadaki M M D,2010.Stress-Wave Induced Fracture in Rock Due to Explosion Action[D].Toronto:University of Toronto.
Borrvall T, Riedel W,2009.The RHT concrete model in LS-DYNA[C]// Proceedings of the 8th European LS-DYNA Users Conference. California: Livermore Software Technology Corporation.
Cui Zhengrong, Wang Yu, Yi Haibao,et al,2019.Numerical simulation and experimental study on rock mass damage caused by double hole blasting under deep high ground stress[J].Blasting,36(2):59-64.
Hu Yingguo, Lu Wenbo, Chen Ming,et al,2012.Comparison and improvement of rock blasting damage models[J].Geotechnical Mechanics,33(11):3278-3284.
Huang Youpeng, Wang Zhiliang, Bi Chengcheng,2018.Simulation analysis of blasting damage range and damage distribution characteristics of rock[J].Hydro-Science and Engine-ering,(5):95-102.
Jayasinghe L B, Shang J, Zhao Z,et al,2019.Numerical investigation into the blasting -induced damage characteristics of rocks considering the role of in-situ stresses and discontinuity persistence[J].Computers and Geotechnics,116:103207.
Liu K, Li Q Y, Wu C Q,et al,2018.A study of cut blasting for one-step raise excavation based on numerical simulation and field blast tests[J] .International Journal of Rock Mechanics and Mining Sciences,109:91-104.
Liu Liang, Lu Wenbo, Chen Ming,et al,2016.Statistical study on damage threshold of rock mass in critical fracture state under drilling and blasting excavation[J].Chinese Journal of Rock Mechanics and Engineering,35(6):1133-1140.
LSTC,2006.LS-DYNA Theory Manual[M].California:Livermore Software Technology Corporation.
Shen S W, Zhao Y, Liu C,et al,2021.Penetration form of inter-hole cracks under double-hole blasting conditions with inclined fissures[J].Advances in Civil Engineering,.
Shen Shiwei, Li Guoliang, Li Dong,et al,2019.Crack propagation law of double hole blasting under different angle prefabricated cracks[J].Acta Coal Sinica,12(10):3049-3057.
Sun Conghuang, Qu Yandong, Kong Xiangqing,et al,2017.Numerical simulation of double hole blasting effect in rock media[J].Blasting,4(3):37-45,130.
Wu B, Xu S X, Meng G W,et al,2021.Study on the dynamic evolution of through-crack in the double hole of elliptical bipolar linear-shaped charge blasting[J].Shock and Vibration,.
Xia Xiang, Li Junru, Li Haibo,et al,2007.Damage characteristics of blasting excavation rock mass in Ling’ao nuclear power station,Guangdong[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(12):2510-2516.
Xie L X, Lu W B, Zhang Q B,et al,2017.Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses[J].Tunnelling and Underground Pace Technology,66:19-33.
Yang Jianhua, Sun Wenbin, Yao Chi,et al,2020.Rock breaking mechanism of porous blasting in high stress rock mass [J].Explosion and Impact,40(7):118-127.
Yang Renshu, Wang Yanbing, Yue Zhongwen,et al,2013.Dynamic behavior of crack propagation in directional fracture double hole blasting[J].Explosion and Impact,7(6):631-637.
Yi C, Sjöberg J, Johansson D,2017.Numerical modelling for blast-induced fragmentation in sublevel caving mines[J] .Tunnelling and Underground Space Technology,68:167-173.
Yue Zhongwen, Guo Yang, Yang Xu,2015.Experimental study on crack propagation behavior of slotted hole under blast loading[J].Journal of Rock Mechanics and Engineering,34 (10):2018-2026.
Zhang X L, Jiao Y Y, Ma J F,2018.Simulation of rock dynamic failure using discontinuous numerical approach [J].Computers and Geotechnics,96:160-166.
Zhao J J, Zhang Y, Ranjith P G,2017.Numerical simulation of blasting-induced fracture expansion in coal masses [J].International Journal of Rock Mechanics and Mining Sciences,100:28-39.
白羽,朱万成,魏晨慧,等,2013.不同地应力条件下双孔爆破的数值模拟[J] .岩土力学,14(增1):466-471.
崔正荣,汪禹,仪海豹,等,2019.深部高地应力条件下双孔爆破岩体损伤数值模拟及试验研究[J].爆破,36(2):59-64.
胡英国,卢文波,陈明,2012.岩石爆破损伤模型的比选与改进[J].岩土力学,33(11):3278-3284.
黄佑鹏,王志亮,毕程程,2018.岩石爆破损伤范围及损伤分布特征模拟分析[J].水利水运工程学报,(5):95-102.
刘亮,卢文波,陈明,等,2016.钻爆开挖条件下岩体临界破碎状态的损伤阈值统计研究[J].岩石力学与工程学报,35(6):1133-1140.
沈世伟,李国良,李冬,等,2019.不同角度预制裂隙条件下双孔爆破裂纹扩展规律[J] .煤炭学报,12(10):3049-3057.
孙从煌,曲艳东,孔祥清,等,2017.岩石介质中双孔爆破效应的数值模拟研究[J] .爆破,4(3):37-45,130.
夏祥,李俊如,李海波,2007.广东岭澳核电站爆破开挖岩体损伤特征研究[J].岩石力学与工程学报,26(12):2510-2516.
杨建华,孙文彬,姚池,等,2020.高地应力岩体多孔爆破破岩机制[J].爆炸与冲击,40(7):118-127.
杨仁树,王雁冰,岳中文,等,2013.定向断裂双孔爆破裂纹扩展的动态行为[J] .爆炸与冲击,7(6):631-637.
岳中文,郭洋,杨煦,2015.切槽孔爆炸载荷下裂纹扩展行为的实验研究[J].岩石力学与工程学报,34(10):2018-2026.
[1] 钟伶志,毛先成,刘占坤,肖克炎,王春锬,陈武. 胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J]. 黄金科学技术, 2022, 30(3): 352-365.
[2] 傅璇,黄麟淇,陈江湛,吴阳春,李夕兵. 迎接深部开采高地温环境的挑战——岩石真三轴试验机地温模拟平台研究[J]. 黄金科学技术, 2022, 30(1): 72-84.
[3] 黄丹,陈何,郑志杰. 基于空隙量守恒的覆岩裂隙带发育高度模型[J]. 黄金科学技术, 2021, 29(6): 843-853.
[4] 邓红卫,钟智明,田广林. 高原矿井分段式增氧通风数值模拟研究[J]. 黄金科学技术, 2021, 29(5): 698-708.
[5] 徐路路,张钦礼,冯如. 基于采场结构参数优化后的充填体强度数值模拟[J]. 黄金科学技术, 2021, 29(3): 421-432.
[6] 贾敬锎,黄滚,汪龙,成墙,甄利兵. 单轴压缩试验中减弱端部效应新型方法研究[J]. 黄金科学技术, 2021, 29(3): 382-391.
[7] 黄进,刘科伟,靳绍虎. 高强弹体侵彻白麻花岗岩靶体的数值模拟研究[J]. 黄金科学技术, 2021, 29(3): 411-420.
[8] 王卫华,罗杰,刘田,韩震宇. 节理粗糙度对应力波传播及试样破坏影响的颗粒流模拟[J]. 黄金科学技术, 2021, 29(2): 208-217.
[9] 谢学斌,高山,过江,叶永飞. 地震动荷载下深埋巷道压力拱高度响应规律的数值模拟研究[J]. 黄金科学技术, 2021, 29(2): 226-235.
[10] 金鹏,刘科伟,李旭东,杨家彩. 深部岩体水耦合爆破裂纹扩展数值模拟研究[J]. 黄金科学技术, 2021, 29(1): 108-119.
[11] 胡建华,庞乐,王学梁,郑明华. 基于正交试验的过断层软破段巷道支护参数优化[J]. 黄金科学技术, 2020, 28(6): 859-867.
[12] 王成龙,侯成录,杨尚欢,赵兴东. 千米深井高应力破碎围岩控制技术[J]. 黄金科学技术, 2020, 28(6): 885-893.
[13] 李泽佑, 黄锐, 赵淑琪, 沈学, 吴娥. 高海拔矿山独头巷道通风降尘方法优选[J]. 黄金科学技术, 2020, 28(5): 743-752.
[14] 苏怀斌, 张钦礼, 张德明, 曾长根, 朱晓江. 穰家垅银矿大规模充填采矿采场结构参数优化研究[J]. 黄金科学技术, 2020, 28(4): 550-557.
[15] 贺桂成, 陈科旭, 戴兵, 王程程. 十字交叉裂隙扩展机理试验与数值模拟研究[J]. 黄金科学技术, 2020, 28(4): 509-520.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!