img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (6): 834-842.doi: 10.11872/j.issn.1005-2518.2021.06.104

• 采选技术与矿山管理 • 上一篇    下一篇

不同热冲击过程花岗岩I型和Ⅱ型断裂特性研究

范晓冬1(),李响1,2(),陶明1,尹土兵1,李夕兵1   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.中山大学土木工程学院,广东 珠海 519082
  • 收稿日期:2021-07-28 修回日期:2021-10-03 出版日期:2021-12-31 发布日期:2022-03-07
  • 通讯作者: 李响 E-mail:Xiaodong_Fan2021@163.com;lixiang85@mail.sysu.edu.cn
  • 作者简介:范晓冬(1995-),男,河南郑州人,硕士研究生,从事岩石力学研究工作。Xiaodong_Fan2021@163.com
  • 基金资助:
    国家自然科学基金项目“深部高温高应力岩石动态断裂特征及微观破裂机理”(51774325);珠海市社会发展领域科技计划项目“复合地层复杂环境下大断面顶管隧道安全施工及灾害防控技术研究与应用”(ZH22036205200004PWC);中山大学中央高校基本科研业务费专项(2021qntd15)

Study on Mode and Mode Fracture Characteristics of Granite Under Different Thermal Shock Process

Xiaodong FAN1(),Xiang LI1,2(),Ming TAO1,Tubing YIN1,Xibing LI1   

  1. 1.School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
    2.School of Civil Engineering, Sun Yat-sen University, Zhuhai 519082, Guangdong, China
  • Received:2021-07-28 Revised:2021-10-03 Online:2021-12-31 Published:2022-03-07
  • Contact: Xiang LI E-mail:Xiaodong_Fan2021@163.com;lixiang85@mail.sysu.edu.cn

摘要:

在岩石工程中发生的与高温相关的灾害中,快速降温的影响(热冲击)不可忽视,因此,研究在不同程度的热冲击作用下花岗岩的断裂特性可以对遭受高温灾害后岩石工程的稳定性分析提供理论依据和技术支撑。在本研究中,花岗岩被加热至目标温度(200 ℃、400 ℃、600 ℃),利用制冷剂的不同温度(-20 ℃、20 ℃、60 ℃) 为高温试样提供不同速率的降温处理。热处理前后对试样干密度、孔隙率和纵波波速进行测定,并通过巴西劈裂试验测试试样Ⅰ型、Ⅱ型断裂韧度。试验结果表明:干密度、纵波波速以及Ⅰ型、Ⅱ型断裂韧度均随降温速率的增大而减小,孔隙率则随降温速率的增大而增大;快速冷却引发的拉应力是造成花岗岩损伤的主要原因,且与岩石试样和制冷剂之间的温差呈正相关。

关键词: 花岗岩, 热冲击, 制冷液, 降温速率, 断裂韧度, 温度梯度

Abstract:

In the high temperature related disasters occurring in rock engineering,the effect of rapid cooling (thermal shock) can’t be ignored.Therefore,the study on mode Ⅰ and mode Ⅱ fracture toughness of granite under different degrees of thermal shock can provide theoretical basis and technical support for the stability analysis of rock engineering after thermal shock disasters.In this experiment,the granite is heated to the target temperature (200 ℃,400 ℃,600 ℃).According to the characteristics of low freezing point of calcium chloride solution,calcium chloride solution is used as refrigerant,and refrigerants of -20 ℃,20 ℃ and 60 ℃ are obtained by means of freezing and heating respectively,and thermocouple thermometer is used to ensure that the temperature of refrigerating liquid reached the set temperature.Use refrigerants (-20 ℃,20 ℃,60 ℃) for three different cooling rate of the high temperature granite processing,namely the three different levels of thermal shock.The physical properties of the samples are measured before and after heat treatment,including dry density,porosity and P wave velocity.In the end,mode Ⅰ and mode Ⅱ fracture toughness of specimens is tested by Brazilian splitting test.The experimental results show that the dry density and P-wave velocity of heated granite samples decrease with the increase of cooling rate,while the porosity increases with the increase of cooling rate.These phenomena are related to the opening and expansion of pores and micro-cracks caused by thermal shock,that is,more violent thermal shock will cause more serious damage to granite.In addition,with the increase of heating temperature,the sensitivity of the physical properties of heated granite to the temperature change of refrigeration liquid decreases during the cooling process.In terms of fracture toughness,the fracture toughness of granite as a whole decreases significantly with the increase of heating temperature.In addition,at the same high temperature level,the mode Ⅰ and mode Ⅱ fracture toughness of heated granite decreases linearly with the decrease of cooling liquid temperature,which is roughly the same as the change trend of physical properties of granite.The main causes of thermal shock damage are the non-uniform expansion and contraction of minerals inside the rock and the disharmony of deformation caused by the temperature gradient inside and outside the rock.The tensile stress generated by the temperature gradient inside and outside the rock is positively correlated with the temperature difference between granite and refrigerant.

Key words: granite, thermal shock, refrigerant fluid, cooling rate, fracture toughness, temperature gradient

中图分类号: 

  • TD853

图1

花岗岩试样Q-石英;Kfs-钾长石;Bt-黑云母"

图2

热处理过程示意图"

表1

不同程度热冲击后花岗岩物理力学性质"

试样温度/℃制冷液温度/℃干密度/(kg·m-3孔隙率/%纵波波速/(m·s-1Ⅰ型断裂韧度/(MPa·m0.5Ⅱ型断裂韧度/(MPa·m0.5
25-2 638.140.6644 272.88--
200-202 634.380.6964 059.680.9731.418
202 638.090.6564 331.961.0201.438
602 642.630.6034 557.401.0701.449
400-202 616.871.3132 802.470.4040.586
202 621.391.2882 877.780.4240.709
602 625.661.2682 935.610.4510.772
600-202 547.113.7761 461.490.0740.159
202 549.223.7521 481.300.0800.160
602 552.393.7351 504.760.0860.161

图3

断裂韧度测试"

图4

不同程度热冲击后花岗岩物理性质变化趋势"

图5

不同程度热冲击下花岗岩断裂韧度"

null Atkinson C, Smelser R E, Sanchez J,1982.Combined mode fracture via the cracked Brazilian disk test[J].International Journal of Fracture,18(4):279-291.
null Brotóns V, Tomás R, Ivorra S, al et,2013.Temperature influence on the physical and mechanical properties of a porous rock:San Julian’s calcarenite[J].Engineering Geology,167:117-127.
null Cheng Zepeng, Xi Baoping, Yang Xinxin, al et,2021.Experimental study on the evolution of granite permeability under thermal shock[J]. Journal of Taiyuan University of Technology,52(2):198-203.
null Collin M, Rowcliffe D,2000.Analysis and prediction of thermal shock in brittle materials[J].Acta Materialia,48(8):1655-1665.
null Fowell R,1995.Suggested method for determining mode I fracture toughness using Cracked Chevron Notched Brazilian Disc(CCNBD)specimens[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abs-tracts,32(1):57-64.
null Franklin J, Vogler U, Szlavin J, al et,1979.Suggested methods for determining water content,porosity,density,absorption and related properties and swelling and slake-durability index properties: Part 1: Suggested methods for determining water content,porosity,density,absorption and related properties[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,16(2):143-151.
null Hall K, Thorn C E,2014.Thermal fatigue and thermal shock in bedrock: An attempt to unravel the geomorphic processes and products[J].Geomorphology,206:1-13.
null He Manchao,2010.The Basis of Deep Rock Mechanics[M].Beijing:Science Press.
null He Manchao, Xie Heping, Peng Suping, al et,2005.Study on rock mechanics in deep mining engineering[J].Chinese Jo-urnal of Rock Mechanics and Engineering,(16):2803-2813.
null Huang Zhenping, Zhang Yi, Wu Weida,2016.Analysis of mechanical and wave properties of heat-treated marble by water cooling[J].Rock and Soil Mechanics,37(2):367-375.
null Kingery W D,1955.Factors affecting thermal stress sesistance of ceramic materials[J]. Journal of the American Ceramic Society,38(1):3-15.
null Kuruppu M D, Obara Y, Ayatollahi M R, al et,2014.ISRM-Suggested method for determining the mode I static fracture toughness using semi-circular bend specimen[J].Rock Me-chanics and Rock Engineering,47(1):267-274.
null Li Q, Yin T, Li X, al et,2020.Effects of rapid cooling treatment on heated sandstone:A comparison between water and liquid nitrogen cooling[J]. Bulletin of Engineering Geology and the Environment,79(1):313-327.
null Li X, Li B, Li X, al et,2020.Thermal shock effects on the mechanical behavior of granite exposed to dynamic loading [J].Archives of Civil and Mechanical Engineering,20(3).DOI: 10.1007/s43452-020-00070-w .
null Li X, Zhang Z, Chen W, al et,2019.Mode I and mode II granite fractures after distinct thermal shock treatments[J].Journal of Materials in Civil Engineering,31(4):6019001.
null Liu H, Zhang K, Shao S, al et,2020.Numerical investigation on the cooling-related mechanical properties of heated Australian Strathbogie granite using Discrete Element Method[J].Engineering Geology,264:105371.
null Shen Y, Hou X, Yuan J, al et,2019.Experimental study on temperature change and crack expansion of high temperature granite under different cooling shock treatments[J].Energies,12(11):2097.
null Tang Shibin, Luo Jiang, Tang Chun’an,2018.Theoretical and numerical study on the cryogenic fracturing in rock[J].Chinese Journal of Rock Mechanics and Engineering,37(7):1596-1607.
null Wang Jun, Zhao Lei, Qi Jianghao,2016.Experimental studies on the critical velocity for tunnel fire smoke control under blocked and block-free conditions[J].Journal of Safety and Environment,16(3):62-68.
null Wu X, Huang Z, Zhang S, al et,2019.Damage analysis of high-temperature rocks subjected to LN2 thermal shock[J].Ro-ck Mechanics and Rock Engineering,52(8):2585-2603.
null Xie Heping,2017.Research framework and anticipated results of deep rock mechanics and mining theory[J].Engineering Science and Technology,49(2):1-16.
null Xie Heping, Gao Feng, Ju Yang,2015.Research and development of rock mechanics in deep ground engineering[J].Chinese Journal of Rock Mechanics and Engineering,34(11):2161-2178.
null 成泽鹏,郤保平,杨欣欣,等,2021.热冲击作用下花岗岩渗透性演变规律试验研究[J].太原理工大学学报,52(2):198-203.
null 何满潮,2010.深部岩体力学基础 [M].北京:科学出版社.
null 何满潮,谢和平,彭苏萍,等,2005.深部开采岩体力学研究[J].岩石力学与工程学报,(16):2803-2813.
null 黄真萍,张义,吴伟达,2016.遇水冷却的高温大理岩力学与波动特性分析[J].岩土力学,37(2): 367-375.
null 唐世斌,罗江,唐春安,2018.低温诱发岩石破裂的理论与数值模拟研究 [J].岩石力学与工程学报,37(7):1596-1607.
null 王君,赵蕾,齐江浩,2016.阻塞效应下隧道火灾临界风速的模型试验研究[J].安全与环境学报,16(3):62-68.
null 谢和平,2017.“深部岩体力学与开采理论”研究构想与预期成果展望[J].工程科学与技术,49(2):1-16.
null 谢和平,高峰,鞠杨,2015.深部岩体力学研究与探索[J].岩石力学与工程学报,34(11):2161-2178.
[1] 冼源宏,詹华思,李健唐. 广东怀集地区矽卡岩型铁多金属矿床同位素地球化学特征及其地质意义[J]. 黄金科学技术, 2021, 29(6): 805-816.
[2] 李柏锦,李响,王彦,尹土兵,李夕兵. 温度冲击对花岗岩动态拉伸力学性能的影响[J]. 黄金科学技术, 2021, 29(4): 545-554.
[3] 胡建华,董喆喆,马少维,秦亚光,徐晓,代转. 应力—渗流耦合作用下损伤岩石渗流特性[J]. 黄金科学技术, 2021, 29(3): 355-363.
[4] 李响,怀震,李夕兵,张倬瑶. 基于裂纹扩展模型的脆性岩石破裂特征及力学性能研究[J]. 黄金科学技术, 2019, 27(1): 41-51.
[5] 陈静,胡继春,逯永卓,卢世银,王树林,徐贝贝. 东昆仑小灶火地区钼矿化正长花岗岩年代学、地球化学特征及其地质意义[J]. 黄金科学技术, 2018, 26(4): 465-472.
[6] 侯江龙,李建康,王登红,陈振宇,代鸿章,刘丽君. 四川甲基卡锂矿区花岗岩体中黑云母的地球化学特征及其地质意义[J]. 黄金科学技术, 2017, 25(6): 1-8.
[7] 高帅,曾庆栋,于昌明,邢宝山,荆林海,叶杰,范宏瑞,杨奎锋. 遥感及综合物探方法用于山东招远南部隐伏成矿侵入体的空间定位[J]. 黄金科学技术, 2017, 25(5): 1-10.
[8] 李太兵,李永光,易建春. 湖南曲溪金矿床成矿作用及成矿物质来源探讨[J]. J4, 2012, 20(4): 104-108.
[9] 杨晋升,阎书杰,张殿龙,刘文化,张瑞忠,张涛. 山东埠上金矿床花岗岩、脉岩与金成矿关系研究[J]. J4, 2011, 19(2): 52-55.
[10] 张涛, 肖小强. 北祁连宁缠河地区花岗岩地球化学特征[J]. 黄金科学技术, 2011, 19(1): 6-10.
[11] 刘远华, 杨贵才, 张轮, 齐金忠, 李文良. 西秦岭阳山超大型金矿床花岗岩岩石地球化学特征[J]. J4, 2010, 18(6): 1-7.
[12] 尹西君. 乌云盆地林海花岗岩体地球化学特征及其与成矿的关系[J]. J4, 2010, 18(5): 47-51.
[13] 任广智, 赵玉锁, 肖振, 卿敏, 魏峰, 缪振平. 河北峪耳崖金矿床矿体赋存规律及找矿预测[J]. J4, 2010, 18(4): 27-32.
[14] 王雪萍, 赵有军, 雷爱全. 青海南部三江北段莫云一东坝地区铀地球化学异常特征及其找矿潜力[J]. J4, 2007, 15(5): 44-49.
[15] 辛洪波, 邓军, 曲晓明, 王建国, 胡世杰. 胶东谢家沟金矿床地质特征与成矿时代研究[J]. J4, 2006, 14(3): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡琴霞, 陈凯, 陈超, 张圣潇. 广东那程银金矿床地质特征及成矿规律浅析[J]. J4, 2011, 19(1): 16 -20 .
[2] 陈力子, 曹东宏, 杨登美. 陕西金龙山金矿古楼山矿段元素地球化学特征[J]. J4, 2011, 19(1): 28 -33 .
[3] 路仁江, 刘鹏金, 娄伟华. 高水固结充填采矿法工艺创新与应用[J]. J4, 2011, 19(1): 51 -54 .
[4] 刘洪君, 刘喜友. 额尔古纳——呼伦深断裂带的形成发展及其对矿产的控制作用[J]. J4, 2007, 15(1): 10 -13 .
[5] 赵文川 ,彭素霞 ,李涛. 寨上金矿区矿脉产状及深部找矿前景初探[J]. J4, 2008, 16(2): 1 -4 .
[6] 李淑芳, 于永安, 朝银银, 王美娟, 张岱, 刘君, 孙亮亮. 在辽东成矿带找寻层控型金矿床靶区[J]. J4, 2010, 18(3): 59 -62 .
[7] 傅星. 青海绿梁山地区金矿床地质特征及成矿条件浅析[J]. J4, 2010, 18(4): 54 -57 .
[8] 刘东海, 刘新会. 西秦岭寨上特大型金矿床黄铁矿特征及其含金性研究[J]. J4, 2010, 18(6): 8 -12 .
[9] 黄建军, 李天恩, 范红科. 大兴安岭地区金(银)多金属矿成矿地质背景及找矿潜力的探讨[J]. J4, 2010, 18(6): 13 -17 .
[10] 李涛, 王书春, 孙树提, 汪仁健, 李亚新, 王宝明. 赤峰柴胡栏子金矿区矿体成矿规律及其找矿应用[J]. J4, 2010, 18(6): 22 -25 .