img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (5): 740-748.doi: 10.11872/j.issn.1005-2518.2021.05.013

• 采选技术与矿山管理 • 上一篇    下一篇

全尾砂膏体充填配比优化正交试验

张美道(),饶运章,徐文峰,王文涛   

  1. 江西理工大学资源与环境工程学院,江西 赣州 341000
  • 收稿日期:2021-01-04 修回日期:2021-07-30 出版日期:2021-10-31 发布日期:2021-12-17
  • 作者简介:张美道(1995-),男,江西龙南人,硕士研究生,从事矿山充填理论与应用研究工作。2812832854@qq.com

Orthogonal Experiment on Optimization of Filling Ratio of Full Tailings Paste

Meidao ZHANG(),Yunzhang RAO,Wenfeng XU,Wentao WANG   

  1. School of Resources and Environmental Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,Jiangxi,China
  • Received:2021-01-04 Revised:2021-07-30 Online:2021-10-31 Published:2021-12-17

摘要:

某新建矿山计划采用全尾砂膏体嗣后充填采矿法进行地下开采。为了提供经济合理、满足强度要求且有利于管道输送的全尾砂膏体充填最优配比方案,以料浆流动性能和充填体强度性能为考察指标进行正交组合配比试验。运用MATLAB软件对试验数据进行极差分析和多元线性回归分析,获得了灰砂比和料浆浓度对充填体强度影响的敏感性以及各力学参数预测模型。结果表明:(1)料浆质量浓度对塌落度的影响起主要作用,灰砂比次之;(2)充填体强度的敏感性随着灰砂比和料浆浓度的增加而增强,充填体强度对灰砂比更敏感,而对料浆浓度的敏感性较弱;(3)确定了全尾砂膏体最优配比:水泥用量为13%,充填料浆质量浓度为77%,此时全尾砂、水泥和水的用量分别占制备全尾砂膏体质量的68.14%、8.86%和23.00%。在该配比条件下,经28 d养护龄期后的抗压强度为2.6279 MPa、弹性模量为205.2 MPa、塌落度为23.7 cm,以较少的水泥用量满足了矿山充填强度指标和自流输送要求。

关键词: 灰砂比, 料浆质量浓度, 全尾砂膏体充填, 正交试验, 回归分析, 最优配比

Abstract:

The use of filling method for underground mining is not only conducive to safe mining and prevent surface subsidence,but also can reduce environmental pollution caused by mining,which meets the national requirements for green mine construction. To obtain an economical filling material that is easy to tansport and meet the mine filling demand, optimising the proportioning of filling materials, which is of great significant to the success of underground mining with infill mining methods.In order to obtain the optimal ratio of full tailings paste filling in a new lead-zinc mine, the orthogonal combination ratio test was designed based on the ash sand ratio and slurry mass concentration.The particle content of the whole tailings less than 20 μm used in the test is 37.26%,which can be used for the preparation of full-tailing paste paste. According to the two-factor four-level orthogonal design experiment,the whole tailings paste slurry and filling body with different ash-sand ratio and slurry mass concentration were prepared.The experiment measured the collapse of different comparison of the total tail capabilizer slurry,consistency,hierarchical degree,and uniaxial compressive strength,elastic modulus,cohesive,and poisson ratio of filling.By analyzing the relationship between the slurry flow performance parameters and the slurry mass concentration and the lime-sand ratio,it was found that the slurry with a slurry mass concentration of 75% to 79% meet the requirements of gravity transportation.The range analysis and multiple linear regression analysis were carried out on the strength parameters of the backfill,and the sensitivity of the four strength parameters to the “two factors” was discussed.The results show that:Among the two influencing factors of slurry mass concentration and lime-sand ratio,the influence of slurry mass concentration on slump takes the main role,followed by the lime-sand ratio;The strength sensitivity of backfill will increase with the increase of two influencing factors,the strength of filling body is more sensitive to the ratio of lime to sand and less sensitive to the mass concentration of slurry;The optimal proportion of the whole tailings paste is 13% of the cement dosage and 77% of the filling slurry concentration.At this time,the amount of total tailings,cement and water account for 68.14%,8.86% and 23% of the required total tailings paste,respectively.The compressive strength,elastic modulus and collapse degree of the composite after 28 days of curing age are 2.6279 MPa,205.2 MPa and 23.7 cm respectively.The experiment provides the mine with the optimal proportion scheme of full tailings paste filling,which is economical and reasonable,quickly meets the strength requirements and conductive to pipeline transportation.

Key words: cement sand ratio, slurry concentration, full tailings paste filling, orthogonal test, regression analysis, optimal ratio

中图分类号: 

  • TD853.34

表1

全尾砂基本物理性质"

参数数值参数数值
松散密度/(g·cm-31.4658孔隙率/%22.46
压实密度/(g·cm-31.8905含水率/%9.40
自然安息角/(°)39.1950渗透系数/(cm·s-14.906×10-5

表2

全尾砂粒径分析结果"

粒径范围/μm累积百分含量/%粒径范围/μm累积百分含量/%
<1027.9837~7418.97
10~209.28>7431.61
20~3712.16

图1

全尾砂粒径累积曲线"

表3

全尾砂化学成分分析结果"

元素含量/%元素含量/%
O56.500Al2.638
Fe15.383S1.726
Si13.770K1.241
Mn7.517其他2.207
Mg3.018

表4

正交试验设计方案"

试验

组号

灰砂比料浆质量 浓度/%

试验

组号

灰砂比料浆质量 浓度/%
11∶47021∶473
31∶47641∶479
51∶67061∶673
71∶67681∶679
91∶1070101∶1073
111∶1076121∶1079
131∶2070141∶2073
151∶2076161∶2079

表5

充填料浆塌落度和分层度试验结果"

灰砂比

质量浓度

/%

坍落度

/cm

稠度1

/cm

稠度2

/cm

分层度

/cm

1∶47028.21012.77411.5121.262
1∶47327.76111.71610.5671.149
1∶47623.9529.2798.6810.598
1∶47920.0525.1334.8680.265
1∶67028.35212.95111.5831.368
1∶67327.55212.33611.2011.135
1∶67626.0559.8569.2050.651
1∶67922.4427.2336.7380.495
1∶107028.92913.57712.1591.418
1∶107327.37212.18410.8621.322
1∶107625.11110.3129.2281.084
1∶107923.4358.9568.4120.544
1∶207028.95513.67811.9971.681
1∶207327.91912.95511.5581.397
1∶207625.49711.45510.4770.978
1∶207920.1388.9808.0020.896

表6

充填体强度试验结果"

配比

抗压强度

/MPa

弹性模量

/GPa

内聚力

/MPa

泊松比υ
1∶4-70%4.8620.3471.0860.218
1∶4-73%5.7520.3931.2760.221
1∶4-76%6.3410.4401.3780.246
1∶4-79%7.3620.6081.7700.233
1∶6-70%1.3520.0920.2170.167
1∶6-73%1.5610.1270.4350.173
1∶6-76%2.3410.1540.7450.199
1∶6-79%3.8410.3141.1060.192
1∶10-70%0.4970.0340.0970.143
1∶10-73%0.5440.0520.140.152
1∶10-76%0.9230.0820.4200.172
1∶10-79%1.3620.1470.6260.165
1∶20-70%0.2130.0150.0390.118
1∶20-73%0.4360.0240.0540.126
1∶20-76%0.8960.0430.0890.147
1∶20-79%1.2530.0840.1900.139

图2

灰砂比、料浆质量浓度与流动性能参数之间的关系曲线图(a)料浆质量浓度与塌落度关系图; (b)灰砂比与塌落度关系图; (c)料浆质量浓度与稠度关系图; (d)料浆质量浓度与分层度关系图"

图3

4种强度参数—敏感因素极差分析(a)抗压强度—敏感因素极差分析; (b)弹性模量—敏感因素极差分析; (c)内聚力—敏感因素极差分析; (d)泊松比—敏感因素极差分析"

Chen Guoliang,Huang Yonggang,Shao Yajian,al et,2016.Based on response surface optimization method of certain mine filling ratio optimization[J].Nonferrous Metals Science and Engineering,7(2):73-76.
Cheng H Y,Wu S C,Zhang X Q,al et,2020.Effect of particle gradation characteristics on yield stress of cemented paste backfill[J].International Journal of Minerals Metallurgy and Materials,27(1):10-17.
Deng Daiqiang,Gao Yongtao,Wu Shunchuan,2009.Liquidity detection based on the slump testing of coarse aggregate filling material[J].Journal of Beijing Institute of Civil Engineering and Architecture,25(1):30-33.
Deng X J,Klein B,Tong L B,al et,2018.Experimental study on the rheological behavior of ultra-fine cemented backfill[J].Construction and Building Materials,158:985-994.
Gao Qian,Yang Xiaobing,Wen Zhenjiang,al et,2019.Optimization of proportioning of mixed aggregate filling slurry based on BBD response surface method[J].Journal of Hunan University(Natural Sciences),46(6):47-55.
Lai Wei,Liu Wanying,2014.Experimental study on the slump of whole tailings backfilling slurry[J].Nonferrous Metals(Mine Section),66(3):26-28.
Li J J,Yilmaz E,Cao S,2020.Influence of solid content,ce-ment/tailings ratio,and curing time on rheology and stre-ngth of cemented tailings backfill[J].Minerals,10(10):922. DOI:10.3390/min10100922.
doi: 10.3390/min10100922
Li Liang,Zhang Xiwei,Hassani F,2016. Review on the basic theory of paste backfill in Oversea[J].China Mining Magazine,25(11):132-138.
Li P,Hou Y B,Cai M F,2019.Factors influencing the pumpability of unclassified tailings slurry and its interval division[J].International Journal of Minerals Metallurgy and Materials,26:417-429.
Li Xibing,Liu Bing,2018. Review and exploration of current situation of backfill mining in hard rock mines[J]. Gold Science and Technology,26(4):492-502.
Li Xibing,Liu Zhixiang,2004.On mechanics of high consolidated tailings backfill and cement-tailing ratios optimi-zation with game tree[J].Journal of Safety and Environment,4(4):87-90.
Liang Bing,Dong Qing,Jiang Liguo,al et,2015.Orthogonal experiments for lead-zinc tailings cemented paste backfill material optimal matching scheme[J].China Safety Science Journal,25(12):81-86.
Qi C C,Tang X L,Dong X J,al et,2019.Towards intelligent mining for backfill:A genetic programming-based method for strength forecasting of cemented paste backfill[J].Minerals Engineering,133:69-79.
Rao Yunzhang,Shu Taijing,Zheng Changlong,al et,2014.Experimental study on the optimal proportion of unclassified tailings cemented filling in Huibaoling Iron Mine[J].China Mining Magazine,23(3):97-100.
Sadrossadat E,Basarir H,Luo G H,al et,2020.Multi-objective mixture design of cemented paste backfill using particle swarm optimisation algorithm[J].Minerals Engineering,153:106385.
Sun Y T,Li G C,Zhang J F,al et,2020.Development of an ensemble intelligent model for assessing the strength of cemented paste backfill[J].Advances in Civil Engineering,DOI:10.1155/2020/1643529.
doi: 10.1155/2020/1643529
Wang Xinmin,Hu Yibo,Wang Shi,al et,2015.Orthogonal test of optimization of ultrafine whole-tailings backfill materials[J].Gold Science and Technology,23(3):45-49.
Wei Wei,Gao Qian,Yang Zhiqiang,2013.Liquidity detection of neotype whole-tailings cementing materials[J].Metal Mine,42(9):30-33.
Wu Aixiang,Wang Yong,Wang Hongjiang,2016. Status and prospects of the paste backfill technology[J]. Metal Mine,45(7):1-9.
Wu Hao,Zhao Guoyan,Cheng Ying,2017.Multi-objective optimization for mix proportioning of mine filling materials[J].Journal of Harbin Institute of Technology,49(11):101-108.
Wu Hao,Zhao Guoyan,Chen Ying,al et,2019.Optimization of mix proportioning of mine filling materials using RSM-DF experiments design method[J].Journal of Basic Science and Engineering,27(2):453-461.
Wu J Y,Jing H W,Yin Q,al et,2020.Strength and ultrasonic properties of cemented waste rock backfill considering confining pressure,dosage and particle size effects[J].Cons-truction and Building Materials,242:118132.
Xu Wenfeng,Rao Yunzhang,Li Shanghui,al et,2019.Analysis on bleeding performance of filling slurry with bentonite[J].Gold Science and Technology,27(3):433-439.
Yang Jingping,2021. Current status and prospects of full tail paste filling mining technology[J].China Mining Magazine,30(Supp.1):17-23.
Yang Xiao,Yang Zhiqiang,Gao Qian,al et,2016.Cemented filling strength test and optimal proportion decision of mixed filling aggregate[J].Rock and Soil Mechanics,37(Supp.2):635-641.
Zhang Qinli,Li Xieping,Yang Wei,2013.Optimization of filling slurry ratio in a mine based on back-propagation neural network[J].Journal of Central South University(Science and Technology),44(7):2867-2874.
Zhao Kang,Zhu Shengtang,Zhou Keping,al et,2020.Mechanical properties of tantalum niobium tailings cemented concrete under different proportions and concentration [J].Journal of Basic Science and Engineering,28(4):833-842.
陈国梁,黄永刚,邵亚建,等,2016.基于响应面优化法的某矿山充填配比优化[J].有色金属科学与工程,7(2):73-76.
邓代强,高永涛,吴顺川,2009.基于坍落度测试的粗骨料充填料浆流动性检验[J].北京建筑工程学院学报, 25(1):30-33.
高谦,杨晓炳,温震江,等,2019.基于RSM-BBD的混合骨料充填料浆配比优化[J].湖南大学学报(自然科学版),46(6):47-55.
赖伟,刘婉莹,2014.全尾砂充填料浆坍落度试验研究[J].有色金属(矿山部分),66(3):26-28.
李亮,张希巍,Hassani F,2016.国外膏体充填基础理论研究综述[J].中国矿业,25(11):132-138.
李夕兵,刘冰,2018.硬岩矿山充填开采现状评述与探索[J].黄金科学技术,26(4):492-502.
李夕兵,刘志祥,2004.高阶段尾砂胶结充填体力学研究与博弈树配比优化[J].安全与环境学报,4(4):87-90.
梁冰,董擎,姜利国,等,2015.铅锌尾砂胶结充填材料优化配比正交试验[J].中国安全科学学报,25(12):81-86.
饶运章,舒太镜,郑长龙,等,2014.会宝岭铁矿全尾砂胶结充填最优配比试验研究[J].中国矿业,23(3):97-100.
王新民,胡一波,王石,等,2015.超细全尾砂充填配比优化正交试验研究[J].黄金科学技术,23(3):45-49.
魏微,高谦,杨志强,2013.新型胶凝材料的流动性试验研究[J].金属矿山,42(9):30-33.
吴爱祥,王勇,王洪江,2016.膏体充填技术现状及趋势[J].金属矿山,45(7):1-9.
吴浩,赵国彦,陈英,2017.多目标条件下矿山充填材料配比优化实验[J].哈尔滨工业大学学报,49(11):101-108.
吴浩,赵国彦,陈英,等,2019.基于RSM-DF的矿山充填材料配比优化[J].应用基础与工程科学学报,27(2):453-461.
徐文峰,饶运章,李尚辉,等,2019.含膨润土充填料浆泌水特性分析[J].黄金科学技术,27(3):433-439.
阳京平,2021.全尾砂膏体充填采矿技术现状及展望[J].中国矿业,30(增1):17-23.
杨啸,杨志强,高谦,等,2016.混合充填骨料胶结充填强度试验与最优配比决策研究[J].岩土力学,37(增2):635-641.
张钦礼,李谢平,杨伟,2013.基于BP网络的某矿山充填料浆配比优化[J].中南大学学报(自然科学版),44(7):2867-2874.
赵康,朱胜唐,周科平,等,2020.不同配比及浓度条件下钽铌矿尾砂胶结充填体力学性能研究[J].应用基础与工程科学学报,28(4):833-842.
[1] 景岳,王少锋,鲁金涛. 矿岩开挖松动区厚度预测及非爆机械化开采判据[J]. 黄金科学技术, 2021, 29(4): 525-534.
[2] 刘奇,岑佑华,刘东锐,罗卫兵,徐喜. 基于静态沉降试验的全尾砂浓密技术参数预测[J]. 黄金科学技术, 2021, 29(2): 266-274.
[3] 黄仁东,李哲. 基于正交试验的细尾砂—分级尾砂充填体强度研究[J]. 黄金科学技术, 2021, 29(2): 256-265.
[4] 胡建华,庞乐,王学梁,郑明华. 基于正交试验的过断层软破段巷道支护参数优化[J]. 黄金科学技术, 2020, 28(6): 859-867.
[5] 张雷, 郭利杰, 李文臣. 基于铜镍冶炼渣制备充填胶凝材料试验研究[J]. 黄金科学技术, 2020, 28(5): 669-677.
[6] 梁昌金, 马传净. 碘—氨浸出体系用于废旧印刷线路板中金的浸取[J]. 黄金科学技术, 2019, 27(5): 784-790.
[7] 徐文峰,饶运章,李尚辉,许威. 含膨润土充填料浆泌水特性分析[J]. 黄金科学技术, 2019, 27(3): 433-439.
[8] 蓝志鹏,王新民,张钦礼,陈秋松. 磁化水对膏体料浆管道输送摩阻损失影响试验研究[J]. 黄金科学技术, 2018, 26(6): 811-818.
[9] 王新民,胡一波,王石,刘吉祥,陈宇,卞继伟. 超细全尾砂充填配比优化正交试验研究[J]. 黄金科学技术, 2015, 23(3): 45-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!