img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (6): 859-867.doi: 10.11872/j.issn.1005-2518.2020.06.047

• 采选技术与矿山管理 • 上一篇    下一篇

基于正交试验的过断层软破段巷道支护参数优化

胡建华1(),庞乐1,王学梁2,郑明华2   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.湖北三宁矿业有限公司,湖北 宜昌 443100
  • 收稿日期:2020-02-28 修回日期:2020-06-07 出版日期:2020-12-31 发布日期:2021-01-29
  • 作者简介:胡建华(1975-),男,湖南衡南人,教授,从事高效安全采矿技术与工程稳定性的研究工作。hujh21@126.com
  • 基金资助:
    国家自然科学基金项目“深部采动下地质结构体跨尺度时变力学行为试验及机理”(41672298)

Optimization of Roadway Support Parameters in Soft Broken Sections Based on Orthogonal Test

Jianhua HU1(),Le PANG1,Xueliang WANG2,Minghua ZHENG2   

  1. 1.School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
    2.Hubei Sanning Mining Co. ,Ltd. ,Yichang 443100,Hubei,China
  • Received:2020-02-28 Revised:2020-06-07 Online:2020-12-31 Published:2021-01-29

摘要:

过断层软破段巷道支护对矿山巷道施工与运行安全具有重要影响。以挑水河磷矿过断层软破段巷道为研究对象,在调查其工程地质条件的基础上,构建了三维矿山巷道的数值仿真模型,设计了3因素(其中1个因素4水平,2个因素2水平)的支护参数正交试验方案,获得不同参数下的支护效果和变形规律,并以极差分析优选确定了巷道的支护方式与参数。研究结果表明:(1)通过正交试验设计可以有效减少试验次数,提高计算效果,计算结果的响应分析确定了不同结果的影响因素,即顶底板位移、垂直应力和巷道侧帮位移大小的主要影响因素分别为锚杆长度、混凝土厚度和碹体厚度。(2)以过断层软破段巷道的位移和应力控制为目标,确定了最优支护方案:锚杆长度为2.8 m、喷射混凝土厚度为100 mm、碹体厚度为250 mm。研究成果为该矿巷道开挖支护提供了技术参考,对具有类似地质条件的金属矿床起到了良好的示范。

关键词: 过断层软破段, 巷道支护, 正交试验, 数值模拟, 应力与变形, 极差分析

Abstract:

Mineral resources are the foundation of social development.Projects such as efficient and safe tunneling and opening roadways are one of the main tasks of underground mines.Due to the differences in the geological conditions of the underground rock layers and the non-selective engineering environment,the roadway support in the soft broken section of the fault has an important impact on the construction and operation safety of the mine roadway.Taking the tunnel development project of the soft-segmented section of F4 fault in Tiaoshuihe Phosphate Mine as an object,we studies how to improve the engineering stability of the roadway by reasonable support design under the influence of F4 fault,the roof structure is poor,and the floor and surrounding rock are relatively soft.Finite difference software FLAC3D was used to construct a three-dimensional numerical simulation model of the mine roadway.A Mohr-Coulomb model was used in this study.The model size is 40 m × 40 m × 40 m,the fault thickness is 8 m,the inclination angle is 75°,and the burial depth is 250 m.The side and bottom of the model are fixed boundaries,and the upper surface is not constrained.The side pressure coefficient is λ=1.2 with reference to Yichang area.The optimization of the support parameters involves three factors:The length of the anchor rod,the thickness of the shotcrete and the thickness of the masonry.Based on the investigation of its engineering geological conditions,an orthogonal experiment scheme of 3 factors (including 1 factor of 4 levels and 2 factors of 2 levels) of support parameters was designed.Based on the analysis of the support effect and deformation law of different parameter combinations,the length of the anchor rod,the thickness of the shotcrete and the thickness of the masonry were reasonably selected under the economic conditions,which provides theoretical basis for the final support mode and parameter optimization.The supporting method and parameters of the roadway were determined by range analysis.The research results show that:(1)The orthogonal experiment design can effectively reduce the number of experiments and improve the calculation effect.The analysis of variance of the calculation results identified the influencing factors of different results.The main factors affecting the displacement of the top and bottom plates,vertical stress,and sideways displacement of the roadway are the length of the anchor rod,the thickness of the concrete,and the thickness of the masonry.Reasonably selecting the size of support parameters is conducive to improving the effect of support.(2)Taking the displacement and stress of the roadway in the soft fault section as the research object,the optimal supporting scheme is determined as bolt length of 2.8 m,shotcrete thickness of 100 mm and arch thickness of 250 mm.The numerical simulation further verifies that the supporting effect under this parameter is conducive to improving the engineering stability of the soft fault section.(3)This study provides technical reference for the excavation and support of roadway of phosphorite and metal deposits with similar geological conditions,and has good demonstration and guidance significance.

Key words: soft break through fault, roadway support, orthogonal test, numerical simulation, stress and defor-mation, range analysis

中图分类号: 

  • TD26

图1

勘探线剖面图Z2dn3-灯影组第三岩性段;Z2dn1+2-灯影组第一第二岩性段;Z2d12-陡山沱组第一岩性段第二亚段;Z2d13-陡山沱组第一岩性段第三亚段;Z2d22-陡山沱组第二岩性段第二亚段; Z2d3-陡山沱组第三岩性段;Z2d4-陡山沱组第四岩性段; Ph2-主要工业磷矿层;1.正断层;2.钻孔;3.厚层状粉晶云岩"

图2

FLAC3D计算模型"

表1

各岩层物理力学参数"

地层密度/ (×103 kg·m-3体积模量/GPa切变模量/GPa黏聚力/MPa内摩擦角/(°)抗拉强度/MPa
岩层2 8306.053.814.331.51.4
F4正断层2 2002.200.741.022.00.1

表2

各支护体物理力学参数"

支护体弹性模量/GPa泊松比黏结力 /kN刚度 /(N·m-2抗拉强度密度/(kg·m-3
锚杆210.00.252001.5e8250 kN-
喷射混凝土25.00.20--2.2 MPa2 300
碹体32.60.20--2.5 MPa2 500

表3

巷道支护正交模拟试验参数"

因素水平锚杆长度/m喷射混凝土厚度/mm碹体厚度/mm
11.6100200
22.0150250
32.4
42.8

表4

巷道支护模拟试验方案组合"

试验编号锚杆长度/m喷射混凝土厚度/mm碹体厚度/mm
11.6100200
21.6150250
32.0100200
42.0150250
52.4100250
62.4150200
72.8100250
82.8150200

图3

开挖未支护巷道位移及应力分布"

图4

8种支护方式下巷道位移"

表5

巷道支护参数指标响应结果"

指标锚杆长度喷射混凝土厚度碹体厚度
极差优化推荐方案/m极差优化推荐方案/mm极差优化推荐方案/mm
顶板位移/mm2.01102.81.39301501.8649250
底板位移/mm3.74852.81.08531002.6183250
两侧位移/mm0.74702.00.43451506.6595250
垂直应力/MPa3.70501.64.72031003.4343250
x方向水平应力/MPa0.17801.62.86201004.1485250

图5

最优方案位移及应力分布"

图6

断层处巷道中心顶底板位移图"

图7

最优方案断层处支护体位移图(a)断层处支护体z方向位移(正/负向位移为底部上鼓/顶部下沉位移);(b)断层处支护体x方向位移(正/负向位移为左/右侧位移)"

1 Kang H,Zhang X,Si L,et al.In-situ stress measurements and stress distribution characteristics in underground coal mines in China[J].Engineering Geology,2010,116(3/4):333-345.
2 De Bellis M L,Della Vecchia G,Ortiz M,et al.A linearized porous brittle damage material model with distributed frictional-cohesive faults[J].Engineering Geology,2016,215:10-24.
3 Niwa M,Shimada K,Aoki K,et al.Microscopic features of quartz and clay particles from fault gouges and infilled fractures in granite:Discriminating between active and inactive faulting[J].Engineering Geology,2016,210:180-196.
4 王玉和,李春朋,崔增斌.含软弱夹层对巷道围岩承载结构的影响分析[J].科学技术与工程,2019,19(36):111-116.
Wang Yuhe,Li Chunpeng,Cui Zengbin,et al.Analyses on the influence of soft interlayer on the bearing structure of roadway surrounding rock[J].Science Technology and Engineering,2019,19(36):111-116.
5 苏锡安.西石门铁矿北区软弱破碎围岩巷道掘支技术[J].中国矿业,2019,28(11):109-112.
Su Xi’an.Excavation and support technology of soft and fractured surrounding rock roadway in north area of Xishimen iron mine[J].China Mining Magazine,2019,28(11):109-112.
6 孙健新.软弱煤岩复合顶板巷道破坏机理与支护技术[J].煤矿安全,2019,50(9):96-100.
Sun Jianxin.Failure mechanism and supporting technology of roadway with weak coal and rock composite roof[J].Safety in Coal Mines,2019,50(9):96-100.
7 王松柏.泥化软岩巷道全断面锚注加固技术研究[J].能源与环保,2019,41(1):125-129.
Wang Songbai.Research on grouting anchorage for full section in soft and mudding roadway[J].China Energy and Environmental Protection,2019,41(1):125-129.
8 Zhao K,Bonini M,Debernardi D,et al.Computational modelling of the mechanised excavation of deep tunnels in weak rock[J].Computers and Geotechnics,2015,66:158-171.
9 李光,马凤山,刘港,等.金川矿区深部巷道支护效果评价及参数优化研究[J].黄金科学技术,2018,26(5):605-614.
Li Guang,Ma Fengshan,Liu Gang,et al.Study on supporting parametric optimizing design and evaluate supporting effect of deep roadway in Jinchuan Mine[J].Gold Science and Technology,2018,26(5):605-614.
10 Wang L G,Li H L,Zhang J.Numerical simulation of creep characteristics of soft roadway with bolt-grouting support[J].Journal of Central South University of Technology,2010,15(1):391-396.
11 丁昌伟,吴德义.典型地质条件深部岩巷锚杆长度的选择[J].山西建筑,2020,46(3):67-69.
Ding Changwei,Wu Deyi.Selection of bolt length in deep rock roadway under typical geological conditions[J].Shanxi Architecture,2020,46(3):67-69.
12 朱家锐,毛明发,常伟华,等.基于正交试验对深部巷道锚喷网支护参数的设计与优化[J].煤炭技术,2017,36(12):22-24.
Zhu Jiarui,Mao Mingfa,Chang Weihua,et al.Designand optimization of shotcrete rockbolt mesh supporting parameters for deep roadway based on orthogonal test [J].Coal Technology,2017,36(12):22-24.
13 刘希亮,王蒙蒙,王新宇,等.基于正交试验的深部岩巷稳定性数值分析[J].煤炭科学技术,2018,46(2):138-143,181.
Liu Xiliang,Wang Mengmeng,Wang Xinyu,et al.Numerical analysis on stability of deep rock roadway based on orthogonal test[J].Coal Science and Technology,2018,46(2):138-143,181.
14 Yang Z,Dai F,Muhammad Usman A,et al.The long- term safety of a deeply buried soft rock tunnel lining under inside-to-outside seepage conditions[J].Tunnelling and Underground Space Technology,2017,67:132-146.
15 胡建华,任启帆,亓中华,等.卧虎山铁矿采场极限暴露面积回归优化模型[J].黄金科学技术,2018,26(4):503-510.
Hu Jianhua,Ren Qifan,Qi Zhonghua,et al.Regress optimize model of limit exposure area to stope in Wohushan iron mine[J].Gold Science and Technology,2018,26(4):503-510.
16 王春,王成,熊祖强,等.动力扰动下深部出矿巷道围岩的变形特征[J].黄金科学技术,2019,27(2):232-240.
Wang Chun,Wang Cheng,Xiong Zuqiang,et al.Deformation characteristics of the surrounding rock in deep mining roadway under dynamic disturbance[J].Gold Science and Technology,2019,27(2):232-240.
17 万军伟.巷道支护参数设计研究[J].能源与环保,2019,41(10):162-165.
Wan Junwei.Research on design of roadway support parameters [J].China Energy and Environmental Protection,2019,41(10):162-165.
18 周国军,贺严.基于Flac3D数值模拟的软弱岩体联合支护机理研究[J].有色矿冶,2019,35(5):6-10.
Zhou Guojun,He Yan.Research on combined supporting mechanism of fractured rock mass based on Flac3D numerical simulation[J].Non-ferrous Mining and Metallurgy,2019,35(5):6-10.
19 黄鑫,姚韦靖.多因素影响下巷道变形特性数值模拟研究[J].中国安全生产科学技术,2019,15(4):32-38.
Huang Xin,Yao Weijing.Numerical simulation study on deformation characteristics of roadway under multi-factor influence[J].Journal of Safety Science and Technology,2019,15(4):32-38.
20 杨明财,盛建龙,叶祖洋,等.基于FlAC3D的露天矿边坡稳定性及影响因素敏感性分析[J].黄金科学技术,2018,26(2):179-186.
Yang Mingcai,Sheng Jianlong,Ye Zuyang,et al.Analysis of sensitivity factors of open-pit mine slope stability and impact based on FlAC3D[J].Gold Science and Technology,2018,26(2):179-186.
21 龙科明,王李管.基于ANSYS-R法的采场结构参数优化[J].黄金科学技术,2015,23(6):81-86.
Long Keming,Wang Liguan.Optimization of stope structural parameters based on ANSYS-R method[J].Gold Science and Technology,2015,23(6):81-86.
[1] 王成龙,侯成录,杨尚欢,赵兴东. 千米深井高应力破碎围岩控制技术[J]. 黄金科学技术, 2020, 28(6): 885-893.
[2] 张雷, 郭利杰, 李文臣. 基于铜镍冶炼渣制备充填胶凝材料试验研究[J]. 黄金科学技术, 2020, 28(5): 669-677.
[3] 李泽佑, 黄锐, 赵淑琪, 沈学, 吴娥. 高海拔矿山独头巷道通风降尘方法优选[J]. 黄金科学技术, 2020, 28(5): 743-752.
[4] 贺桂成, 陈科旭, 戴兵, 王程程. 十字交叉裂隙扩展机理试验与数值模拟研究[J]. 黄金科学技术, 2020, 28(4): 509-520.
[5] 苏怀斌, 张钦礼, 张德明, 曾长根, 朱晓江. 穰家垅银矿大规模充填采矿采场结构参数优化研究[J]. 黄金科学技术, 2020, 28(4): 550-557.
[6] 聂兴信, 甘泉, 高建, 冯珊珊. 协同理念下岩金矿脉群连续回采顶板安全跨度研究[J]. 黄金科学技术, 2020, 28(3): 337-344.
[7] 于世波, 杨小聪, 原野, 王志修. 深部区域采矿时序的地压调控卸荷效应研究[J]. 黄金科学技术, 2020, 28(3): 345-352.
[8] 寇永渊, 李光, 邹龙, 马凤山, 郭捷. 金川二矿区+1 000 m中段水平矿柱回采方法研究[J]. 黄金科学技术, 2020, 28(3): 353-362.
[9] 黄锐,吴娥,吴林. 海拔高度对矿井巷道火灾烟气蔓延规律的影响研究[J]. 黄金科学技术, 2020, 28(2): 293-300.
[10] 张钦礼,蒋超余,高翔,刘斌. 大断面六角形进路采矿法结构参数优化研究[J]. 黄金科学技术, 2020, 28(1): 42-50.
[11] 田龙,周智勇,陈建宏. 配备辅助通风的高温矿井采掘区温度分布数值模拟[J]. 黄金科学技术, 2020, 28(1): 61-69.
[12] 高远,陈庆发,蒋腾龙. 大新锰矿复杂空区群三维数值模型构建方法及胶结充填治理研究[J]. 黄金科学技术, 2019, 27(6): 851-861.
[13] 谢也真,曹平,陈昊然. 滥泥坪铜矿三维地应力测量及巷道布置优化研究[J]. 黄金科学技术, 2019, 27(6): 862-870.
[14] 田军, 刘建坡, 杨勇, 张长银. 进路充填法爆破扰动诱发充填体破坏规律研究[J]. 黄金科学技术, 2019, 27(5): 687-695.
[15] 宋恩祥, 李强, 张静, 彭康. 蚀变带内矿体开采中人工假底的应用研究[J]. 黄金科学技术, 2019, 27(5): 722-730.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 宋贺民, 冯喜利, 丁宪华. 太行山北段交界口矿区地质地球化学特征及找矿方向[J]. J4, 2010, 18(3): 54 -58 .
[2] 李淑芳, 于永安, 朝银银, 王美娟, 张岱, 刘君, 孙亮亮. 在辽东成矿带找寻层控型金矿床靶区[J]. J4, 2010, 18(3): 59 -62 .
[3] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[4] 崔廷军, 逯克思, 庄勇, 傅星. 青海省柴达木盆地南缘金成矿带特征及成矿规律浅析[J]. J4, 2010, 18(3): 63 -67 .
[5] 杨明荣, 牟长贤. 原子荧光法测定化探样品中砷和锑的不确定度评定[J]. J4, 2010, 18(3): 68 -71 .
[6] 苏建华, 陆树林. 从高酸低浓度尾液中萃取金的试验[J]. J4, 2010, 18(3): 72 -75 .
[7] 王大平, 宋丙剑, 韦库明. 大功率激电测量在辽宁北水泉寻找隐伏矿床的应用[J]. J4, 2010, 18(3): 76 -78 .
[8] 刘胜光, 高海峰, 黄锁英. 电子手薄在山东焦家金矿地质专业中的应用[J]. J4, 2010, 18(3): 79 -82 .
[9] 黄俊,吴家富,鲁如魁 ,夏立元. 内蒙古兵图金矿成因探讨及找矿方向[J]. J4, 2010, 18(4): 1 -5 .
[10] 刘新会,刘家军,陈彩华. 西秦岭寨上特大型金矿床硫盐矿物特征及其成因意义[J]. J4, 2010, 18(4): 6 -11 .