img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (4): 550-557.doi: 10.11872/j.issn.1005-2518.2020.04.030

• 采选技术与矿山管理 • 上一篇    下一篇

穰家垅银矿大规模充填采矿采场结构参数优化研究

苏怀斌1(),张钦礼1(),张德明2,曾长根3,朱晓江3   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410000
    2.湖南中大设计院有限公司,湖南 长沙 410000
    3.湖南蓬源鸿达矿业有限公司,湖南 衡阳 421000
  • 收稿日期:2020-01-06 修回日期:2020-05-11 出版日期:2020-08-31 发布日期:2020-08-27
  • 通讯作者: 张钦礼 E-mail:1291306752@qq.com;zhangqinlicn@126.com
  • 作者简介:苏怀斌(1995-),男,河南灵宝人,硕士研究生,从事充填理论与技术研究工作。1291306752@qq.com
  • 基金资助:
    “十三五”国家重点研发计划项目“大型高尾矿库溃坝灾害防控关键技术研究及应用示范”(2017YFC0804605)

Study on the Optimization of Stope Structure Parameters in the Large-scale Backfilling Mining of Rangjialong Silver Mine

Huaibin SU1(),Qinli ZHANG1(),Deming ZHANG2,Changgen ZENG3,Xiaojiang ZHU3   

  1. 1.School of Resources and Safety Engineering,Central South University,Changsha 410000,Hunan,China
    2.Hunan Zhongda Design Institute Co. , Ltd. ,Changsha 410000,Hunan,China
    3.Hunan Pengyuan Hongda Mining Co. , Ltd. ,Hengyang 421000,Hunan,China
  • Received:2020-01-06 Revised:2020-05-11 Online:2020-08-31 Published:2020-08-27
  • Contact: Qinli ZHANG E-mail:1291306752@qq.com;zhangqinlicn@126.com

摘要:

穰家垅银矿存在大量采空区和尾砂堆积等问题,矿山采用的空场法已不能满足持续发展的需求。为提高采场作业安全性,缓解地表尾砂排放压力,拟采用二步骤空场嗣后充填法进行回采,以期处理地表堆积的尾砂,保证采场安全稳定,为此亟待确定采场结构参数。研究建立了5种不同跨度的采场结构模型,利用有限元仿真模拟软件分析二步回采后顶柱、充填体人工矿柱的应力及位移,综合对比不同方案下的顶柱和充填体间柱的安全性,得出采场跨度为15~25 m时,采场安全稳定。考虑到矿山经济效益,最终确定合理的采场跨度为20~25 m。这对同类工程地质条件下的矿山开采具有借鉴意义。

关键词: 采矿方法, 二步骤空场嗣后充填, 采场结构参数优化, 数值模拟, ANSYS

Abstract:

Rangjialong mine is a continuous mining mine,and a large number of mined-out areas are left over from years of open-field mining,which are prone to caving and collapse,thus inducing large-scale ground pressure activities.A large number of pillars are left in the open field method,and the loss of pillar resources is serious.At the same time,tailings pond design dam crest elevation of 165 m,the current has been discharged to 156 m,tailings pond storage capacity is close to saturation,the mine is facing the dilemma of nowhere to discharge the tailings.In order to solve the above problems,the mine will change the current method to the two-step stope backfilling method,which is urgent to determine the safe and reasonable stope structure parameters,mainly considering stope span.In this study,finite element simulation software was used to establish 5 stope structure models with different spans,with a gradient of 5 m and a span range of 15~35 m.The two-step stoping process is simulated,and the stress distribution and displacement variation of the two step stoping pillar and backfill artificial pillar were obtained,and the ultimate strength of the stope rock (or backfill) was compared,and the stope structure parameters were optimized.According to the results of simulation,the value of the tensile stress of the artificial pillar and backfill in each scheme is less than the allowable tensile stress,the safety coefficient of the tensile stress decreases with the increase of the stope width,and the minimum value is close to 2.0.The roof column and pillar under each simulation scheme are not in a state of instability.When the stope span is between 15 m and 25 m,the simulated compressive stress value of the corresponding model is in the critical state or stable state,the compressive stress safety coefficient is greater than 1.3,and the Y direction displacement is uniform.The simulated compressive stress value of the roof pillar is very close to the allowable value when the stope span is greater than 30 m,the roof column is prone to compressive stress failure.The overall displacement change in the Y direction of the filling artificial pillar under 5 schemes does not exceed 10 mm,which is safe and controllable.In order to ensure the economic benefits of the mine,the reasonable stope span is finally determined to be 20~25 m,the stope width is 40 m and the stage height is 80 m.It can provide theoretical support for the recovery of residual ore resources in mines with similar engineering geological conditions.

Key words: mining method, two-step backfilling of empty space, optimization of stope structure parameters, numerical simulation, ANSYS

中图分类号: 

  • TD853

表1

模拟采用的力学参数数据汇总"

名称弹性模量Em/GPa抗压强度σm/MPa抗拉强度σt/MPa体重/(kg·m-3泊松比υ黏结力Cm/MPa内摩擦角φm/(°)
围岩8.19.66.32 7500.190.832
矿体7.36.283.55 5000.251.835
充填体0.121.590.21 9400.240.237

表2

不同采场结构参数模拟方案"

模拟序号宽度X/m长度Y/m高度Z/m
1154080
2204080
3254080
4304080
5354080

图1

数值模型剖面图1-胶结充填体;2-矿体顶柱;3-充填体人工矿柱;4-矿体"

表3

各模型数值模拟结果汇总"

区域模拟序号模拟压应力值/Pa压应力安全系数模拟拉应力值/Pa拉应力安全系数Y方向位移/m
顶柱17.31E+058.592.82E+0512.420.00141
21.04E+066.043.80E+059.220.00213
34.81E+061.311.29E+062.710.00513
45.41E+061.161.49E+062.350.01113
56.31E+061.001.79E+061.960.04313
充填体人工矿柱11.11E+0514.321.87E+0410.670.01644
22.70E+055.894.44E+044.510.01957
34.88E+053.267.54E+042.650.02351
45.53E+052.888.56E+042.340.02565
56.12E+052.609.26E+042.160.02925

图2

采场跨度20 m的数值模拟结果云图"

图3

采场跨度25 m的数值模拟结果云图"

图4

采场跨度30 m的数值模拟结果云图"

1 马俊生,任高峰,张聪瑞,等.基于稳定性图表法和数值模拟的采场跨度优化研究[J].中国矿山工程,2017,46(6):7-14.
Ma Junsheng,Ren Gaofeng,Zhang Congrui,et al.Study on stope span optimization based on stability chart and numerical simulation[J].China Mine Engineering,2017,46(6):7-14.
2 Feng X T,Hudson J.The ways ahead for rock engineering design methodologies[J].International Journal of Rock Mechanics and Mining Sciences,2004,41(2):255-273.
3 Feng X T,Hudson J.Rock Engineering Design[M]. London:CRC Press,2011:322-341.
4 董蕾.采动结构参数优化设计及可靠度分析[D].长沙:中南大学,2010.
Dong Lei.Optimization Design and Reliability Analysis of Mining Structure Parameters[D].Changsha:Central South University,2010.
5 蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
Cai Meifeng.Rock Mechanics Rock Engineering[M]. Beijing:Science Press,2002.
6 王文星.岩体力学[M].长沙:中南大学出版社,2004.
Wang Wenxing.Rock Mass Mechanics[M].Changsha:Central South University Press,2004.
7 杨剑锋.中厚倾斜矿体导流放矿实验研究[D].衡阳:南华大学,2018.
Yang Jianfeng.Experimental Study on Diversion Ore Drawing of Medium-thick Inclined Orebody[D].Hengyang:University of South China,2018.
8 李彬,许梦国,程爱平,等.程潮铁矿放矿模拟试验研究[J].有色金属(矿山部分),2011,63(5):15-18.
Li Bin,Xu Mengguo,Cheng Aiping,et al.Simulation experiment of ore drawing in Chengchao iron mine[J]. Nonferrous Metals(Mine Section),2011,63(5):15-18.
9 刘爱华,董蕾.海水下基岩矿床安全开采顶板厚度计算方法[J].采矿与安全工程学报,2010,27(3):335-340.
Liu Aihua,Dong Lei.Calculation methods of roof thickness for safety mining of bedrock deposit undersea water pressure[J].Journal of Mining and Safety Engineering,2010,27(3):335-340.
10 饶运章,陈辉,肖广哲,等.基于FLAC3D数值模拟采场底部结构设计研究[J].有色金属科学与工程,2011,2(2):43-47.
Rao Yunzhang,Chen Hui,Xiao Guangzhe,et al.On the design of stope bottom structures based on FLAC3D numerical simulation[J].Jiangxi Nonferrous Metals,2011,2(2):43-47.
11 王树海,李威.三山岛新立矿区采场结构参数优化研究[J].中国矿业,2009,18(5):53-55,63.
Wang Shuhai,Li Wei.Optimization selection of mining method in under-sea deposit in Xinli zone of Sanshandao gold mine[J].China Mining Magazine,2009,18(5):53-55,63.
12 朱旭波.地下金属矿岩体质量评价与采场结构参数优化研究[D].长沙:中南大学,2011.
Zhu Xubo.Study on Quality Evaluation of Underground Metal Ore Mass and Optimization of Stope Structure Parameters[D].Changsha:Central South University,2011.
13 欧任泽,何立夫.基于3D-σ有限元法的采场结构参数优化[J].有色金属(矿山部分),2019,71(4):5-11.
Renze Ou,He Lifu.Optimization of stope structure parameters based on 3D-σ finite element method[J].Nonferrous Metals(Mine Section),2019,71(4):5-11.
14 周富华,徐学员,徐宏伟.内蒙古某铅锌矿采场结构参数优化[J].现代矿业,2018,34(11):69-72.
Zhou Fuhua,Xu Xueyuan,Xu Hongwei.Optimization of the stope structural parameters of a Pb-Zn mine in Inner Mongolia[J]. Modern Mining,2018,34(11):69-72.
15 刘建东,解联库,曹辉.大规模充填采矿采场稳定性研究与结构参数优化[J].金属矿山,2018,47(12):10-13.
Liu Jiandong,Xie Lianku,Cao Hui.Study on structural parameters optimization and stability of stope for large-scale backfill mining[J].Metal Mine,2018,47(12):10-13.
16 曾杨,刘白璞,邓飞,等.淘锡坑钨矿采场结构参数优化[J].有色金属科学与工程,2018,9(3):70-75.
Zeng Yang,Liu Baipu,Deng Fei,et al.Research on optimizing structure parameters in Taoxikeng tungsten mine[J].Nonferrous Metals Science and Engineering,2018,9(3):70-75.
17 潘桂海,秦健春.高应力矿体充填法采场结构参数优化研究[J].有色金属(矿山部分),2018,70(1):20-23.
Pan Guihai,Qin Jianchun.Optimization of stope structure parameters with filling method in high-stress mine [J]. Nonferrous Metals(Mine Section),2018,70(1):20-23.
18 沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
Shen Zhujiang.Theoretical Soil Mechanics[M]. Beijing:China Water Resources and Hydropower Press,2000.
19 刘洋树,李安平,王刚,等.VCR法采场结构参数优化的相似模型实验[J].有色矿冶,2011,27(2):10-15.
Liu Yangshu,Li Anping,Wang Gang,et al.Experimental investigation into effect of span on the stability of VCR stope using physical scale modeling[J].Non-Ferrous Min-ing and Metallurgy,2011,27(2):10-15.
20 杨帆,侯克鹏,谢永利.岩质高边坡岩体力学参数确定及稳定性研究[J].西安建筑科技大学学报(自然科学版),2011,43(6):845-853.
Yang Fan,Hou Kepeng,Xie Yongli.Research on methods to determine mechanical parameters and stability of rock mass from high rock slope[J].Journal of Xi’an University of Architecture and Technology(Natural Science Edition),2011,43(6):845-853.
21 古德生,李夕兵.现代金属矿床开采科学技术[M].北京:冶金工业出版社,2006.
Gu Desheng,Li Xibing.Modern Science and Technology of Metal Deposit Mining[M]. Beijing:Metallurgical Industry Press,2006.
22 孙杨,罗黎明,邓红卫.金属矿山深部采场稳定性分析与结构参数优化[J].黄金科学技术,2017,25(1):99-105.
Sun Yang,Luo Liming,Deng Hongwei.Stability analysis and parameter optimization of stope in deep metal mines[J].Gold Science and Technology,2017,25(1):99-105.
23 姜立春,王玉丹.复杂荷载作用下残采矿柱综合安全系数[J].中南大学学报(自然科学版),2018,49(6):1511-1518.
Jiang Lichun,Wang Yudan.Comprehensive safety factor of residual mining pillar under complex loads[J]. Journal of Central South University(Science and Technology),2018,49(6):1511-1518.
[1] 贺桂成, 陈科旭, 戴兵, 王程程. 十字交叉裂隙扩展机理试验与数值模拟研究[J]. 黄金科学技术, 2020, 28(4): 509-520.
[2] 寇永渊, 李光, 邹龙, 马凤山, 郭捷. 金川二矿区+1 000 m中段水平矿柱回采方法研究[J]. 黄金科学技术, 2020, 28(3): 353-362.
[3] 聂兴信, 甘泉, 高建, 冯珊珊. 协同理念下岩金矿脉群连续回采顶板安全跨度研究[J]. 黄金科学技术, 2020, 28(3): 337-344.
[4] 于世波, 杨小聪, 原野, 王志修. 深部区域采矿时序的地压调控卸荷效应研究[J]. 黄金科学技术, 2020, 28(3): 345-352.
[5] 黄锐,吴娥,吴林. 海拔高度对矿井巷道火灾烟气蔓延规律的影响研究[J]. 黄金科学技术, 2020, 28(2): 293-300.
[6] 张钦礼,蒋超余,高翔,刘斌. 大断面六角形进路采矿法结构参数优化研究[J]. 黄金科学技术, 2020, 28(1): 42-50.
[7] 田龙,周智勇,陈建宏. 配备辅助通风的高温矿井采掘区温度分布数值模拟[J]. 黄金科学技术, 2020, 28(1): 61-69.
[8] 高远,陈庆发,蒋腾龙. 大新锰矿复杂空区群三维数值模型构建方法及胶结充填治理研究[J]. 黄金科学技术, 2019, 27(6): 851-861.
[9] 张钦礼,赵宇飞,荣帅,康虔. 基于变权重理论和TOPSIS的缓倾斜薄矿脉采矿方法优选[J]. 黄金科学技术, 2019, 27(6): 844-850.
[10] 谢也真,曹平,陈昊然. 滥泥坪铜矿三维地应力测量及巷道布置优化研究[J]. 黄金科学技术, 2019, 27(6): 862-870.
[11] 张天航, 赵兴东, 李怀宾, 赵一凡, 张姝婧. 急倾斜中厚矿体长矿房连续开采干式充填采矿法[J]. 黄金科学技术, 2019, 27(5): 704-711.
[12] 金家聪,陈庆发. 协同采矿方法的创新思维与创新技法[J]. 黄金科学技术, 2019, 27(5): 712-721.
[13] 田军, 刘建坡, 杨勇, 张长银. 进路充填法爆破扰动诱发充填体破坏规律研究[J]. 黄金科学技术, 2019, 27(5): 687-695.
[14] 宋恩祥, 李强, 张静, 彭康. 蚀变带内矿体开采中人工假底的应用研究[J]. 黄金科学技术, 2019, 27(5): 722-730.
[15] 杨仕教,王志会. 上覆公路浅埋采空区群稳定性数值模拟[J]. 黄金科学技术, 2019, 27(4): 505-512.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 苏建华, 陆树林. 从高酸低浓度尾液中萃取金的试验[J]. J4, 2010, 18(3): 72 -75 .
[2] 衣存昌, 臧恩光. 黑龙江老柞山金矿成矿规律及深部找矿探讨[J]. J4, 2010, 18(4): 58 -61 .
[3] 刘金鹏, 刘万强, 李定坤, 李天栋. 金亭岭金矿竖井提升系统的合理化改造[J]. J4, 2010, 18(4): 80 -81 .
[4] 张印飞. 陕西双王金矿床八号矿体矿化规律探讨[J]. J4, 2008, 16(1): 35 -38 .
[5] 杨明荣, 牟长贤. 原子荧光法测定化探样品中砷和锑的不确定度评定[J]. J4, 2010, 18(3): 68 -71 .
[6] 姜琪, 王荣超. 甘肃枣子沟金矿床形成环境及矿床成因[J]. J4, 2010, 18(4): 37 -40 .
[7] . 第二届黄金科学技术论坛暨勘采选冶新理论新技术研讨会(二号通知)[J]. J4, 2010, 18(4): 82 .
[8] 刘远华, 杨贵才, 张轮, 齐金忠, 李文良. 西秦岭阳山超大型金矿床花岗岩岩石地球化学特征[J]. J4, 2010, 18(6): 1 -7 .
[9] 宋贺民, 冯喜利, 丁宪华. 太行山北段交界口矿区地质地球化学特征及找矿方向[J]. J4, 2010, 18(3): 54 -58 .
[10] 刘新会,刘家军,陈彩华. 西秦岭寨上特大型金矿床硫盐矿物特征及其成因意义[J]. J4, 2010, 18(4): 6 -11 .