img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (6): 879-887.doi: 10.11872/j.issn.1005-2518.2019.06.879

• 采选技术与矿山管理 • 上一篇    下一篇

基于主成分分析—支持向量机模型的矿岩可爆性等级预测研究

韩超群(),陈建宏(),周智勇,杨珊   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2019-01-28 修回日期:2019-03-25 出版日期:2019-12-31 发布日期:2019-12-24
  • 通讯作者: 陈建宏 E-mail:hanchaoq@126.com;cjh@263.cn
  • 作者简介:韩超群(1992-),男,河南商丘人,硕士研究生,从事矿山爆破设计和安全系统工程研究工作。hanchaoq@126.com
  • 基金资助:
    国家自然科学基金项目“地下金属矿采掘计划可视化优化方法与技术研究”(51374242);“基于属性驱动的矿体动态建模及更新方法研究”(51504286);中南大学中央高校基本科研业务费专项资金(2018zzts741)

Research on Prediction of Rock Mass Blastability Classification Based on PCA-SVM Model

Chaoqun HAN(),Jianhong CHEN(),Zhiyong ZHOU,Shan YANG   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2019-01-28 Revised:2019-03-25 Online:2019-12-31 Published:2019-12-24
  • Contact: Jianhong CHEN E-mail:hanchaoq@126.com;cjh@263.cn

摘要:

矿岩可爆性等级的准确评判对爆破开挖设计以及岩土工程的安全稳定具有重要意义。通过综合考虑岩体固有属性与实际爆破效果对矿岩可爆性等级的影响,选取了岩体声波、波阻抗、爆破漏斗体积、大块率、小块率和平均合格率共6类指标,进行可爆性预测研究。为消除影响指标之间的信息重叠,针对55个矿岩样本数据集的大量信息,采用主成分分析法降维,提取得到包含98.38%原始信息的4类主成分,最后引入支持向量机模型对可爆性等级进行预测研究。研究结果表明:(1)与原始SVM模型相比,基于主成分分析法—支持向量机的预测模型不仅降低了数据的维度,同时使得矿岩可爆性等级预测准确率由78.5%提高至90.1%;(2)基于主成分分析法—支持向量机预测模型的评判结果与实际情况较为吻合,少量误判主要发生在部分特征差异性较小的矿岩样本之间。基于分层随机抽样技术的PCA-SVM预测模型,保证了训练集与测试集样本数据的随机性和差异性,对研究指标维数较多且部分指标间相关性较强的数据模型具有较强的适用性,对相似工程的研究具有一定的借鉴意义。

关键词: 矿岩可爆性, 岩体固有属性, 爆破效果, 主成分分析, 支持向量机, 随机抽样, 等级预测

Abstract:

The accurate evaluation of the classification of rock mass blast ability is of great significance to the design of blasting excavation and the safety and stability of geotechnical engineering.At present,scholars at home and abroad in the field of blasting have not reached a consensus on the evaluation method of rock blast ability.The factors affecting rock blasting are very complex,and the research indicators adopted by different scholars are different.By comprehensively considering the influence of the inherent properties of the rock mass and the actual blasting effect on the rock mass blast ability,six kinds of attributes including acoustic wave and wave impedance of rock mass,volume of blasting funnel,percentage of large blocks,percentage of small blocks and average eligibility rate were selected to predict the classification of rock mass blast ability.Considering the complex and varied geological conditions of engineering rock masses,according to the actual situation of several mines,55 sample data were selected,which cover quartzite,magnetite,skarn,diorite, gneiss,the lithology of marble,granite,limestone,metamorphic schist,dolomite,sandstone,etc..The sample raw data are from many rock mass engineering with different geographical locations and different geological conditions,which are representative.The PCA-SVM model and the SVM model were used to compare and analyze the explosive rock prediction results.Firstly,the same random seeds were used to ensure that the number of ore samples of the two models is the same as that of the training set and forecast set.Then,according to the data extracted by the principal component analysis and the raw data that have not been processed,the SVM models were established respectively,and the 11 prediction results were compared and analyzed.In the 11 randomized trials,the accuracy of PCA-SVM model was 100% at one time,there were 8 cases where one sample was misjudged,and 2 cases where two samples were misjudged.The number of misjudgments in the PCA-SVM model in a single random experiment is less than or equal to the SVM model.The average prediction accuracy of the PCA-SVM model is 90.1%,which was significantly higher than the SVM model.The results show that:(1) The prediction model based on principal component analysis and support vector machine eliminates the information overlap between the impact indicators and extracts four principal components which contain 98.38% of the original information.Compared with the standard SVM model,the PCA-SVM model not only reduces the dimension of the data,but also improves the accuracy of the rock explode grade from 78.5% to 90.1%.(2) The prediction results of PCA-SVM model are in good agreement with the actual situation.A small number of misjudgments mainly occur between some rock samples with small differences in characteristics.(3)The PCA-SVM prediction model based on the stratified random sampling technique ensures the randomness and difference of the sample data between the training set and the test set.This method is more scientific and reasonable than the general research model,and has a certain reference significance for the research of similar engineering.

Key words: rock mass blastability, inherent properties of the rock mass, blasting effect, principal component analysis, support vector machine, random sampling, grade prediction

中图分类号: 

  • TD235

图1

主成分分析计算流程"

图2

矿岩可爆性预测模型流程图"

表1

岩体可爆性分级预测研究样本数据"

序号矿岩名称X1X2X3X4X5X6可爆性等级
1薄层灰岩3 1288.433.931.511.50.387
2灰白色白云岩3 6809.911.467.17.20.246
3角砾岩2 9277.716.749.311.40.414
4米黄色白云岩3 83010.02.781.25.40.293
5紫色含矿白云岩2 8217.39.956.711.10.395
6紫色不含矿白云岩3 2198.412.852.711.50.765
7青灰色白云岩3 3108.511.255.011.30.359
8角闪斜长片麻岩5 37314.960.68.210.40.17
9黄铜闪锌黄铁矿4 07413.445.820.211.40.12
10致密石榴石矽卡岩5 21517.443.58.615.90.023
11闪长岩4 85412.635.010.718.10.122
12大理岩4 77613.016.214.223.20.204
13磁铁矿4 45014.747.830.07.40.188
14混合岩3 1408.542.228.09.90.483
15绿泥片岩2 0505.310.068.07.30.508
16千枚岩1 9845.211.675.04.50.918
171870细粒大理岩5 53314.529.426.214.80.075
18矽卡岩4 96312.977.96.55.20.093
?????????
551825含矿浅色砂岩4 00410.565.334.50.10.021

表2

矿岩可爆性影响指标相关系数矩阵"

相关系数岩体声波波阻抗爆破漏斗体积大块率小块率平均合格率
岩体声波1
波阻抗0.91891
爆破漏斗体积0.23680.26491
大块率-0.2014-0.2977-0.60251
小块率0.05470.1575-0.2781-0.56061
平均合格率-0.3368-0.3214-0.23040.3814-0.22291

表3

主成分方差贡献率及其特征值"

主成分特征值贡献率/%累计贡献率/%
PC12.615943.6043.60
PC21.376922.9566.55
PC31.205820.1086.64
PC40.703911.7398.38
PC50.07291.2299.59
PC60.02460.41100.00

表4

主成分提取后输入因子数据"

序号矿岩名称PC1PC2PC3PC4可爆性等级
1薄层灰岩0.8423610.3150030.4229270.162393
2灰白色白云岩1.5393611.699857-1.110430-0.97020
3角砾岩1.7974040.438431-0.451760-0.14860
4米黄色白云岩2.0723452.252531-1.640230-1.087060
5紫色含矿白云岩2.1779120.490495-0.765810-0.401240
6紫色不含矿白云岩2.2393570.837842-0.8403901.106790
7青灰色白云岩1.6573650.709957-0.957150-0.378490
8角闪斜长片麻岩-2.4214601.4871380.7088590.404729
9黄铜闪锌黄铁矿-1.1765200.8314470.376829-0.201160
10致密石榴石矽卡岩-2.8037200.707335-0.5400100.077760
11闪长岩-1.687660-0.103580-0.5411500.124458
12大理岩-1.348350-0.800030-1.7324600.441841
13磁铁矿-1.0979601.8719130.331022-0.105220
14混合岩0.7956590.5874270.9164040.556719
15绿泥片岩3.3835370.822144-0.275600-0.462640
16千枚岩4.2814481.549846-0.1190000.812629
171870细粒大理岩-1.7659001.004592-1.188400-0.228400
18矽卡岩-2.2291101.8996902.110488-0.067380
???????
551825含矿浅色砂岩-0.5005202.4348661.986787-1.178260

表5

PCA-SVM与SVM模型预测结果对比"

矿岩编号矿岩名称实际等级PCA-SVMSVM
4米黄色白云岩Ⅲ*Ⅲ*
7青灰色白云岩Ⅲ*
8角闪斜长片麻岩
16千枚岩
21三层铁
33-160 m西四层铁
37+1 600 m底板紫色砂岩
42+1 620 m顶板长石石英砂岩
48+1 845 m矿体浅色砂岩
49+1 860 m底板紫红色沙哑
52+331 m浅色含矿砂岩Ⅳ*

图3

PCA-SVM模型矿岩可爆性等级分布图"

表6

11次随机试验模型预测结果对比"

序号随机种子设置PCA-SVM模型误判数(准确率/%)SVM模型误判数(准确率/%)
准确率均值90.178.5
11831(90.9)2(81.8)
22081(90.9)3(72.7)
32791(90.9)1(90.9)
43041(90.9)3(72.7)
54060(100.0)1(90.9)
64241(90.9)4(63.6)
75141(90.9)2(81.8)
86212(81.8)4(63.6)
97241(90.9)1(90.9)
107662(81.8)2(81.8)
118101(90.9)3(72.7)
1 蒋复量.金属矿矿岩可爆性评价及井下采场深孔爆破参数优化的理论与试验研究[D].长沙:中南大学,2012.
Jiang Fuliang.The Evaluation of Ore-rock’s Blastability in Metal Mine and the Theoretical and Experimental Study of Deep-hole Blasting Parameters’ Optimization in Underground Stope[D].Changsha:Central South University,2012.
2 张钦礼,刘伟军,杨伟,等.基于PCA和改进BP组合预测模型的矿岩可爆性研究[J].爆破,2016,33(1):19-25,83.
Zhang Qinli,Liu Weijun,Yang Wei,et al.Study on rock mass blastability based on combined PCA and improved BP predicting model[J].Blasting,2016,33(1):19-25,83.
3 胡桂英,刘科伟,杜鑫,等.光面掏槽爆破技术的研究及其在巷道掘进中的应用[J].黄金科学技术,2018,26(3):349-356.
Hu Guiying,Liu Kewei,Du Xin,et al.Research on smooth-cutting method and its application in tunnel excavation[J].Gold Science and Technology,2018,26(3):349-356.
4 卢富然,陈建宏.基于AHP和熵权TOPSIS模型的岩爆预测方法[J].黄金科学技术,2018,26(3):365-371.
Lu Furan,Chen Jianhong.Rock burst prediction method based on AHP and entropy weight TOPSIS model[J].Gold Science and Technology,2018,26(3):365-371.
5 张德明,王新民,郑晶晶,等.基于模糊综合评判的矿岩体可爆性分级[J].爆破,2010,27(4):43-47.
Zhang Deming,Wang Xinmin,Zheng Jingjing,et al.Blastability classification of rock and mine based on fuzzy comprehensive evaluation[J].Blasting,2010,27(4):43-47.
6 赵国彦,余佩佩,周礼.基于未确知测度理论的岩体可爆性分级[J].爆破,2013,30(4):20-24,31.
Zhao Guoyan,Yu Peipei,Zhou Li.Classification of rock mass blastability based on unascertained measurement theory[J].Blasting,2013,30(4):20-24,31.
7 李金玲,王李管,陈鑫.露天矿山复杂爆破网路起爆模拟及效果预测[J].黄金科学技术,2017,25(4):87-92.
Li Jinling,Wang Liguan,Chen Xin.Complex blasting network detonation simulation and effect prediction for open pit mine[J].Gold Science and Technology,2017,25(4):87-92.
8 李启月,韦佳瑞,李易,等.施工方案技术改进在某金矿深孔爆破成井中的应用[J].黄金科学技术,2016,24(3):1-8.
Li Qiyue,Wei Jiarui,Li Yi ,et al.Application of technology improvement of construction scheme in deep hole blasting of a gold mine[J].Gold Science and Technology,2016,24(3):1-8.
9 彭亚雄,程瑶,吴立,等.基于AHP-TOPSIS法的矿岩可爆性评价[J].爆破,2017,34(4):80-84,105.
Peng Yaxiong,Cheng Yao,Wu Li,et al.Assessment for ore-bearing rock mass blastability based on AHP-TOPSIS [J].Balsting,2017,34(4):80-84,105.
10 马康,张群,盛建龙,等.基于GCRN的矿岩可爆性分级模型及其应用[J].武汉科技大学学报(自然科学版),2016,39(3):200-203.
Ma Kang,Zhang Qun,Sheng Jianlong,et al.GCRN-based model for classification of ore-bearing rock-mass blastability and its application[J].Journal of Wuhan University of Science and Technology(Natural Science Edition),2016,39 (3):200-203.
11 邵良杉,赵琳琳,温廷新,等.基于模糊多元线性回归模型的岩石可爆性评价[J].中国安全科学学报,2015,25(7):68-73.
Shao Liangshan,Zhao Linlin,Wen Tingxin,et al.Assessment of rock mass blastability based on fuzzy multiple linear regression model[J].China Safety Science Journal,2015,25(7):68-73.
12 王超,许红磊,李祥龙,等.矿岩可爆性分级的距离判别方法及应用[J].昆明理工大学学报(自然科学版),2017,42(2):34-37,62.
Wang Chao,Xu Honglei,Li Xianglong,et al.A distance discriminant analysis method for orebody blastability classification and its application[J].Journal of Kunming University of Science and Technology (Natural Science Edition),2017,42(2):34-37,62.
13 邓红卫,陈超群,张亚南.岩体可爆性等级判别的随机森林模型及R实现[J].世界科技研究与发展,2016,38(5):946-949.
Deng Hongwei,Chen Chaoqun,Zhang Yanan.Random forest model of rock mass blastability grading and R language implementation[J].World Sci-Tech R&D,2016,38(5):946-949.
14 辛明印,璩世杰,陈煊年,等.南芬露天铁矿的岩体可爆性分级方法及其应用[J].工程爆破,2006,12(1):7-10.
Xin Mingyin,Qu Shijie,Chen Xuannian,et al.A new method of rock-mass blastability classification and its application in Nan-fen open pit iron mine engineering balsting[J].Engineering Blasting,2006,12(1):7-10.
15 刘志祥,郭虎强,兰明.金属矿采空区危险性判别的PCA-SVM模型研究[J].矿冶工程,2014,34(4):16-19.
Liu Zhixiang,Guo Huqiang,Lan Ming.Study on PCA-SVM model for evaluation of gob hazards in metal mine[J].Mining and Metallurgical Engineering,2014,34(4):16-19.
16 詹长杰,周步祥.基于PCA-SVM模型的中长期电力负荷预测[J].电测与仪表,2015,52(9):6-10,40.
Zhan Changjie,Zhou Buxiang.The medium and long term power load forecasting model based on PCA-SVM[J].Electrical Measurement and Instrumentation,2015,52(9):6-10,40.
17 罗战友,杨晓军,龚晓南.基于支持向量机的边坡稳定性预测模型[J].岩石力学与工程学报,2005,24(1):144-148.
Luo Zhanyou,Yang Xiaojun,Gong Xiaonan.Support vector machine model in slope stability evaluation[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(1):144-148.
18 张曼,陈建宏,周智勇.基于SVM的冲击地压分级预测模型及R语言实现[J].中国地质灾害与防治学报,2018,29(4):64-69.
Zhang Man,Chen Jianhong,Zhou Zhiyong.Grading prediction model of rock burst based on SVM and its R language description[J].The Chinese Journal of Geological Hazard and Control,2018,29(4):64-69.
19 钮强,龙凌霄,王明林.我国岩石爆破性分级的试验研究[J].金属矿山,1984(12):2-8.
Niu Qiang,Long Lingxiao,Wang Minglin.Experimental study on rock blasting classification in China[J].Metal Mine,1984(12):2-8.
20 韩路朋,肖敏,刘杰.基于Fisher判别分析和R语言的矿岩可爆性等级预测研究[J].现代矿业,2017,33(12):59-63.
Han Lupeng,Xiao Min,Liu Jie.Study on prediction of rock mass blastability classification based on fisher discriminant analysis method and R language[J].Modern Mining,2017,33(12):59-63.
[1] 崔宇,李夕兵,董陇军,白吕. 玲珑金矿微震监测台网布设优化[J]. 黄金科学技术, 2019, 27(3): 417-424.
[2] 段学良,马凤山,赵海军,郭捷,顾鸿宇,刘帅奇. 滨海矿山矿坑涌水源识别与混合比研究[J]. 黄金科学技术, 2019, 27(3): 406-416.
[3] 周智勇, 肖玮, 陈建宏, 李欢. 基于PCA和GM(1,1)的矿山生态环境预测模型[J]. 黄金科学技术, 2018, 26(3): 372-378.
[4] 刘强,李夕兵,梁伟章. 岩体质量分类的PCA-RF模型及应用[J]. 黄金科学技术, 2018, 26(1): 49-55.
[5] 张钦礼,王兢*,王新民. 基于核主成分分析与PSO-SVM的充填管道失效风险性分级评价模型[J]. 黄金科学技术, 2017, 25(3): 70-76.
[6] 刘志祥,刘奕然,兰明. 矿井涌水量预测的PCA-GA-ELM模型及应用[J]. 黄金科学技术, 2017, 25(1): 61-67.
[7] 史秀志,范玉乾,尚雪义. 基于PCA-BP神经网络模型的充填体强度预测[J]. 黄金科学技术, 2016, 24(3): 64-69.
[8] 李夕兵,朱玮,刘伟军,张德明. 基于主成分分析法与RBF神经网络的岩体可爆性研究[J]. 黄金科学技术, 2015, 23(6): 58-63.
[9] 过江,张碧肖. 基于PCA与BP神经网络的充填管道失效风险评估[J]. 黄金科学技术, 2015, 23(5): 66-71.
[10] 陈建宏,朱鼎耀,陈轶俊,叶阿明,邱文. 基于PCA-BP神经网络的尾矿库坝体稳定性分析[J]. 黄金科学技术, 2015, 23(5): 47-52.
[11] 刘学元,孙焕英,黄再心,龚全德,毛磊,谢艳芳. ETM遥感数据在白音吉日嘎拉—阿尔萨拉一带1∶5万地质调查中的应用[J]. 黄金科学技术, 2015, 23(1): 61-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!