img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2018, Vol. 26 ›› Issue (2): 241-247.doi: 10.11872/j.issn.1005-2518.2018.02.241

• 冶炼技术与装备研发 • 上一篇    下一篇

甘肃某复杂难处理金矿细菌氧化—氰化实验研究

宋言1,杨洪英1*,佟琳琳1,马鹏程2,金哲男1   

  1. 1.东北大学冶金学院,辽宁 沈阳 110819;
    2.山东招金集团有限公司,山东 招远 265400
  • 收稿日期:2017-07-11 修回日期:2017-08-15 出版日期:2018-04-30 发布日期:2018-05-19
  • 通讯作者: 杨洪英(1960-),女,河北张家口人,教授,博士生导师,从事稀贵金属冶金研究工作。yanghy@smm.neu.edu.cn
  • 作者简介:宋言(1989-),男,河北邢台人,博士研究生,从事细菌冶金研究工作。SONGYANNEU@139.com
  • 基金资助:

    国家自然科学基金项目“含砷复杂金矿细菌氧化矿物界面能及其作用机制的基础研究”(编号:U1608254)、“难浸含砷金矿细菌氧化过程中[AsS]2-→As(III)→As(V) 转化机理研究”(编号:51374066)、中央高校基本科研业务费专项基金资助项目“高硫高砷难处理金矿细菌氧化机理研究”(编号:N150206002)、辽宁省自然科学基金项目“难浸金矿特色细菌氧化—提金新工艺”(编号:2012223002)和“利用ASH-07浸矿菌从含铜浮选尾矿中高效绿色回收铜的新技术研究”(编号:2014020037)联合资助
     

Experimental Study on Bacterial Oxidation-Cyanidation of a Complex Re-fractory Gold Mine in Gansu Province

SONG Yan 1,YANG Hongying 1,TONG Linlin 1,MA Pengcheng 2,JIN Zhenan 1   

  1. 1.School of Metallurgy,Northeastern University,Shenyang 110819,Liaoning,China;2.Zhaojin Mining Industry Co.,Ltd.,Zhaoyuan 265400,Shandong,China
  • Received:2017-07-11 Revised:2017-08-15 Online:2018-04-30 Published:2018-05-19

摘要: 以甘肃某含硫、砷、碳及锑等多种成分的难处理金矿为研究对象,开展了细菌氧化—氰化实验研究。浸矿菌种为HQ0211,该菌种经长期驯化,耐砷性良好。在浸出过程中,通过测量矿浆的pH 值、电位值、Fe2+质量浓度和液砷含量,来考察不同矿浆浓度对浸出效果的影响。实验结果表明:HQ0211混合菌种适宜氧化该复杂难处理金矿。经该菌种氧化预处理后,脱硫率最高可达81.53%,脱砷率最高可达86.88%,脱碳率最高可达58.32%,脱锑率最高可达40.09%。与未经处理的原矿氰化提金结果相比,经过细菌氧化预处理后,金的回收率最高可达98.65%,相比直接氰化浸出提高了40.56%。

关键词: 复杂难处理金矿, 细菌氧化, 氰化提金, 浸矿菌种HQ0211, 脱硫, 脱砷, 脱碳, 脱锑

Abstract: Taking the complex refractory gold mine containing sulfur,arsenic,carbon and antimony in Gansu Province as the research object,we carried out bacterial oxidation-cyanidation experiment.Bacteria used in the leaching was HQ0211 which was a kind of mixed bacteria being able to grow normally in the system containing arsenic after a long time of domestication.During leaching of the concentrate,the effects of different pulp densities on bacterial oxidation were evaluated by measuring the pH value of solution,the electric potential value of solution,the density of Fe2+,the density of arsenic in solution.The results indicated that the mixed bacteria cultures HQ0211 showed good biooxidation performance for the complex refractory gold concentrate. After biooxidation,the maximum sulfur removal efficiency of 81.53%,arsenic removal efficiency of 86.88%,carbon removal efficiency of 58.32% and antimony removal efficiency of 40.56% were achieved in the presence of the HQ0211 mixed culture.Highest gold recovery of 98.65% was achieved by cyanidation after biooxidation,which increased by 40.56% comparing to the result from cyanidation of the untreated concentrate.

Key words: complex refractory gold concentrate, bacterial oxidation, cyanidation, bioleaching bacteria HQ0211, sulfur removal efficiency, arsenic removal efficiency, carbon removal efficiency, antimony removal efficiency
参考文献(References):

中图分类号: 

  • TF831


[1] 付丹,梅雪,张晖.黄金价格与通货膨胀相关性的实证分析[J].黄金,2009,30(1):4-7.
 Fu Dan,Mei Xue,Zhang Hui.Empirical analysis on the correlation between gold price and inflation[J].Gold,2009,30(1):4-7.
[2] 李鹏远.中国黄金供需预测及对策研究[D].北京:中国地质大学(北京),2015.
 Li Pengyuan.China’s Gold Supply and Demand Forecasting and Countermeasure Research[D].Beijing:China University of Geosciences (Beijing),2015.
[3] 周博敏,安丰玲.世界黄金生产现状及中国黄金工业发展的思考[J].黄金,2012,33(3):1-6.
 Zhou Bomin,An Fengling.Current situations of worldwide gold production and considerations on gold industry development in China[J].Gold,2012,33(3):1-6.
[4] 杨洪英,巩恩普,杨立.低品位双重难处理金矿石工艺矿物学及浸金影响因素[J].东北大学学报(自然科学版),2008,29(12):1742-1745.
 Yang Hongying,Gong Enpu,Yang Li.Process mineralogy of low-grade double refractory gold ore and influencing factor on gold leaching[J].Journal of Northeastern University(Natural Science),2008,29(12):1742-1745.
[5] 陈懋弘,毛景文,陈振宇,等.滇黔桂“金三角”卡林型金矿含砷黄铁矿和毒砂的矿物学研究[J].矿床地质,2009,28(5):539-557.
 Chen Maohong,Mao Jingwen,Chen Zhenyu,et al.Mineralogy of arsenian pyrites and arsenopyrites of carlin-type gold deposits in Yunnan-Guizhou-Guangxi “golden triangle” area,southwestern China[J].Mineral Deposits,2009,28(5):539-557.
[6] 张伟,王宏强,邓晓东,等.鄂东南地区鸡冠嘴铜金矿床Au-Ag-Bi-Te-Se矿物学研究与金银富集机理[J].岩石学报,2016,32(2):456-470.
 Zhang Wei,Wang Hongqiang,Deng Xiaodong,et al.Mineralogy of the Au-Ag-Bi-Te-Se assemblages in the Jiguanzui Cu-Au skarn deposit,Daye District,southeastern Hubei Province[J].Acta Petrologica Sinica,2016,32(2):456-470.
[7] 杨洪英,杨立,佟琳琳,等.广西金牙难浸金矿的工艺矿物学研究[J].东北大学学报(自然科学版),2007,28(8):1156-1158.
 Yang Hongying,Yang Li,Tong Linlin,et al.Process mineralogy of refractory gold ore in Jinya,Guangxi Province[J].Journal of Northeastern University (Natural Science),2007,28(8):1156-1158.
[8] 杨洪英,杨立,范有静,等.广西某难处理金矿金的赋存状态研究[J].贵金属,2003,24(4):32-35.
 Yang Hongying,Yang Li,Fan Youjing,et al.Study on gold occurrence state of refractory gold concentrates in Guangxi[J].Precious Metals,2003,24(4):32-35.
[9] 陈翠华,张燕,顾雪祥,等.贵州苗龙金矿床毒砂中金的赋存状态研究[J].矿床地质,2013,32(5):932-940.
 Chen Cuihua,Zhang Yan,Gu Xuexiang,et al.Modes of occurrence of gold in arsenopyrite from Miaolong gold deposit in Sandu,Guizhou Province[J].Mineral Deposits,2013,32(5):932-940.
[10] 张燕,陈翠华,顾雪祥,等.贵州三都苗龙金—锑矿床金赋存状态初步探讨[J].中国地质,2014,41(5):1620-1635.
 Zhang Yan,Chen Cuihua,Gu Xuexiang,et al.A preliminary study of modes of occurrence of gold in the Miaolong Au-Sb deposit of Sandu area,Guizhou Province[J].Geology in China,2014,41(5):1620-1635.
[11] Amankwah R K,Yen W T,Ramsay J A.A two-stage bacterial pretreatment process for double refractory gold ores[J].Minerals Engineering,2005,18(1):103-108.
[12] Song Y,Yang H Y,Tong L L.Bioleaching of complex refractory gold ore concentrate of China:Comparison of shake flask and continuous bioreactor[J].Advanced Materials Research,2015,1130:243-246.
[13] Liu Q,Yang H Y,Tong L L.Influence of Phanerochaete chrysosporium on degradation and preg-robbing capacity of activated carbon[J].Transactions of Nonferrous Metals Society of China,2014,24(6):1905-1911.
[14] Pan H D,Yang H Y,Tong L L,et al.Control method of chalcopyrite passivation in bioleaching[J].Transactions of Nonferrous Metals Society of China,2012,22(9):2255-2260.
[15] Liu Q,Yang H Y,Tong L L,et al.Fungal degradation of elemental carbon in Carbonaceous gold ore[J].Hydrometallurgy,2016,160(2):90-97.
[16] Chandraprabha M N,Modak J M,Natarajan K A,et al.Strategies for efficient start-up of continuous biooxidation process for refractory gold ores[J].Minerals Engineering,2002,15(10):751-753.
[17] Canales C,Acevedo F,Gentina J C.Laboratory-scale continuous bio-oxidation of a gold concentrate of high pyrite and enargite content[J].Process Biochemistry,2002,37(10):1051-1055.
[18] Lotfalian M,Ranjbar M,Fazaelipoor M H,et al.The effect of redox control on the continuous bioleaching of chalcopyrite concentrate[J].Minerals Engineering,2015,81:52-57.
[19] Elberling B,Schippers A,Sand W.Bacterial and chemical oxidation of pyritic mine tailings at low temperatures[J].Journal of Contaminant Hydrology,2000,41(3/4):225-238.
[20] Konishi Y,Kogasaki K,Asai S.Bioleaching of pyrite by Acidianus brierleyi in a continuous-flow stirred-tank reactor[J].Chemical Engineering Science,1997,52(24):4525-4532.
[21] Wei Y,Zhong K,Adamov E V,et al.Semi-continuous biooxidation of the Chongyang refractory gold ore[J].Minerals Engineering,1997,10(6):577-583.
[22] Brierley J A,Brierley C L.Present and future commercial applications of biohydrometallurgy[J].Process Metallurgy,1999,9(2):81-89.
[23] Ehrlich H L.Past,present and future of biohydrometallurgy[J].Hydrometallurgy,2001,59(2/3):127-134.

[1] 李佳峰, 杨洪英, 佟琳琳, 金哲男, 张登超. 抛刀岭难处理金精矿细菌氧化—提金实验研究[J]. 黄金科学技术, 2018, 26(2): 248-253.
[2] 陈亚静,杨洪英*,佟琳琳,金哲男. 含砷矿石细菌氧化液除砷实验及砷钙渣稳定性研究[J]. 黄金科学技术, 2018, 26(1): 124-129.
[3] 许晓阳,蔡创开,丁文涛. 某难处理金矿热压预氧化—氰化工艺研究[J]. 黄金科学技术, 2014, 22(4): 135-138.
[4] 黄中省,王春,贺登平,伍赠玲,衷水平. 某低Au/S比难处理金精矿连续生物氧化—提金中试研究[J]. 黄金科学技术, 2014, 22(4): 99-102.
[5] 夏光祥,段东平. 金三角金矿提金技术基础研究及工业应用开发[J]. 黄金科学技术, 2013, 21(1): 65-70.
[6] 仲维华. 浮选金精矿细菌氧化—氰化提金连续扩大试验研究[J]. 黄金科学技术, 2012, 20(6): 62-64.
[7] 任洪胜,邢洪波,刘新艳,郭宏. 辽宁三道沟含砷金精矿细菌氧化—氰化提金试验研究[J]. J4, 2012, 20(1): 78-81.
[8] 邢洪波, 郭宏, 任洪胜. 吉林省南岔含砷金精矿细菌氧化—氰化提金试验研究[J]. J4, 2010, 18(1): 70-73.
[9] 王海瑞,张学仁. 细菌氧化提金工艺的研究、设计与生产实践[J]. J4, 2004, 12(5): 28-32.
[10] 陈聪,姚香. 难处理金矿石预处理方法简述[J]. J4, 2004, 12(4): 27-30.
[11] 方兆珩,夏光祥. 高砷难处理金矿的提金工艺研究[J]. J4, 2004, 12(2): 35-40.
[12] 冯肇伍. 高砷高硫金精矿细菌氧化——氰化提金试验研究[J]. J4, 2003, 11(4): 12-16.
[13] 王康林,汪模辉,蒋金龙. 难处理金矿石的细菌氧化预处理研究现状[J]. J4, 2001, 9(1): 19-24.
[14] 柯家骏. 难浸金矿氰化提金的现状与问题[J]. J4, 1998, 6(1): 32-39.
[15] 王文潜,邢启智. 难浸金矿细菌预处理在北美的研究开发[J]. J4, 1995, 3(6): 15-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 鲍振襄. 湘中自马山—龙山—醴陵锑金矿带矿床地质特征、成矿作用及成因[J]. 黄金科学技术, 1994, 2(4): 29 -35 .
[2] 李斌, 邹海洋, 杨牧, 杜高峰, 韦继康, 王天国. 马来西亚吉兰丹州Ulu Sokor金矿地质特征及找矿方向[J]. J4, 2010, 18(4): 17 -21 .
[3] 闫杰, 覃泽礼, 谢文兵, 蔡邦永. 青海南戈滩—乌龙滩地区多金属地质特征与找矿潜力[J]. J4, 2010, 18(4): 22 -26 .
[4] 任广智, 赵玉锁, 肖振, 卿敏, 魏峰, 缪振平. 河北峪耳崖金矿床矿体赋存规律及找矿预测[J]. J4, 2010, 18(4): 27 -32 .
[5] 喻光明, 白万成, 郭俊华. 基于矿床定位预测系统DPIS平台的成矿预测应用——以阳山金矿富集区为例[J]. J4, 2010, 18(4): 33 -36 .
[6] 刘东海, 刘新会. 西秦岭寨上特大型金矿床黄铁矿特征及其含金性研究[J]. J4, 2010, 18(6): 8 -12 .
[7] 吴富强, 梁胜跃. 云南东川地区播卡金矿成矿规律研究[J]. J4, 2011, 19(1): 1 -5 .
[8] 张涛, 肖小强. 北祁连宁缠河地区花岗岩地球化学特征[J]. 黄金科学技术, 2011, 19(1): 6 -10 .
[9] 张燕, 汤倩. 剪切带型金矿研究进展——以云南哀牢山金矿带为例[J]. J4, 2011, 19(1): 11 -15 .
[10] 胡琴霞, 陈凯, 陈超, 张圣潇. 广东那程银金矿床地质特征及成矿规律浅析[J]. J4, 2011, 19(1): 16 -20 .