黄金科学技术 ›› 2023, Vol. 31 ›› Issue (6): 953-963.doi: 10.11872/j.issn.1005-2518.2023.06.120
Qinghua GU1,2(),Yifan DU1(),Pingfeng LI3,Dan WANG2
摘要:
为了解决当前露天矿区非结构化路面落石检测存在的环境复杂、落石尺寸差异较大以及落石与非结构化路面颜色相近而造成难以精准识别的问题,提出了一种基于加权双向特征融合的矿区道路落石检测模型。首先,通过加入SimAM 注意力机制有效抑制背景环境的干扰;其次,使用加权双向特征金字塔(BiFPN)结构实现多尺度特征融合,增强模型对于不同尺寸落石的特征提取能力;最后,引入轻量级卷积GSConv模块,通过减少模型计算量来提升模型检测速度。试验结果表明,该算法的检测精度均值达到92.8%,检测速度达到63.1FPS,能够实现矿区非结构化路面落石的实时高精度检测,为无人矿卡的安全行驶提供了保障。
中图分类号:
Cao M C, Wang J M,2020.Obstacle detection for autonomous driving vehicles with multi-lidar sensor fusion[J].Journal of Dynamic Systems Measurement and Control,142(2):021007. | |
Chen Ken, Ou Ou, Yang Changzhi,et al,2023.Rockfall detection method based on improved YOLOX[J].Computer Measurement and Control,31(11):53-59. | |
Dong L H, Wang X R, Liu B Z,et al,2021.Information acquisition incentive mechanism based on evolutionary game theory[J].Wireless Communications and Mobile Computing,2021:5525791.DOI:https://doi.org/10.1155/2021/5525791 .
doi: https://doi.org/10.1155/2021/5525791 |
|
Gao Qie, Li Denghua, Ding Yong,2024.A study on the rock block tracking algorithm that utilizes the M-DBT framework[J/OL].Hydro-Science and Engineering:1-13[2024-01-02].. | |
Girshick R,2015.Fast R-CNN[C]//IEEE International Conference on Computer Vision(ICCV).Santiago:IEEE: 1580 1732. | |
Girshick R, Donahue J, Darrell T,et al,2014.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vsion and PatternRecognition(CVPR).Columbus:IEEE: 14632381.DOI:10.1109/CVPR.2014.81 .
doi: 10.1109/CVPR.2014.81 |
|
Han K, Wang Y H, Tian Q,et al,2020.Ghostnet:More features from cheap operations[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Seattle:IEEE: 19874590.DOI: 10.1109/CVPR42600.2020.00165 .
doi: 10.1109/CVPR42600.2020.00165 |
|
He K M, Zhang X Y, Ren S Q,et al,2015.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,37(9):1904-1916. DOI: 10.1109/TPAMI.2015. 2389824 .
doi: 10.1109/TPAMI.2015. 2389824 |
|
Li H L, Li J, Wei H B,et al,2022.Slim-neck by GSConv:A better design paradigm of detector architectures for autonomous vehicles[J].arXiv preprint arXiv:2206.02424.DOI:https://doi.org/10.48550/arXiv.2206.02424 .
doi: https://doi.org/10.48550/arXiv.2206.02424 |
|
Lin T Y, Goyal P, Girshick R,et al,2017a.Focal loss for dense object detection[C]//IEEE International Conference on Computer Vsion(ICCV).Venice:IEEE: 19262330.DOI: 10.1109/TPAMI.2018.2858826 .
doi: 10.1109/TPAMI.2018.2858826 |
|
Lin T Y, Dollár P, Girshick R,et al,2017b.Feature pyramid networks for object detection[C]//IEEE Conference on Computer Vsion and Pattern Recognition(CVPR).Hawaii:IEEE: 17355379.DOI: 10.1109/CVPR.2017.106 .
doi: 10.1109/CVPR.2017.106 |
|
Liu B, Ding Z F, Tian L L,et al,2020.Grape leaf disease identification using improved deep convolutional neural networks[J].Frontiers in Plant Science,11:1082. DOI: https://doi.org/10.3389/fpls.2020.01082 .
doi: https://doi.org/10.3389/fpls.2020.01082 |
|
Liu B, Tian B H, Qiao J C,2022.Mine track obstacle detection method based on information fusion[C]//Journal of Physics:Conference Series.IOP Publishing,2229(1):012023. DOI: 10.1088/1742-6596/2229/1/012023 .
doi: 10.1088/1742-6596/2229/1/012023 |
|
Liu Linya, Wu Songying, Zuo Zhiyuan,et al,2021.Research on Rockfall detection method of mountain railway slope based on YOLOv3 algorithm[J].Computer Science,48(Supp.2):290-294. | |
Liu W, Anguelov D, Erhan D,et al,2016.Ssd:Single shot multibox detector[C]//European Conference on Computer Vision(ECCV).Amsterdam:IEEE: 21-37. | |
Liu Zixue, Wang Fubin, Yu Kai,2022.Research and implementa-tion of the railway rockfall detection based on modified YO-LOv3[J].High Speed Railway Technology,13(3):52-56,80. | |
Lu Caiwu, Qi Fan, Ruan Shunling,2020.An open-pit mine roadway obstacle warning method integrating the object detection and distance threshold model[J].Opto-Electronic Engineering,47(1):40-47. | |
More K S, Wolkersdorfer C,2023.Intelligent mine water management tools—eMetsi and machine learning GUI[J].Mine Water and the Environment,42(1):111-120.DOI:https://doi.org/10.1007/s10230-023-00917-7 .
doi: https://doi.org/10.1007/s10230-023-00917-7 |
|
Patel N, Krishnamurthy P, Tzes A,et al,2021.Overriding learning-based perception systems for control of autonomous unmanned aerial vehicles[C]//International Conference on Unmanned Aircraft Systems (ICUAS).Athens:IEEE: 20916280.DOI: 10.1109/ICUAS51884.2021.9476881 .
doi: 10.1109/ICUAS51884.2021.9476881 |
|
Redmon J, Farhadi A,2017.YOLO9000:Better,faster,stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Honolulu:IEEE: 17355115.DOI: 10.1109/CVPR.2017.690
doi: 10.1109/CVPR.2017.690 |
|
Ren S Q, He K M, Girshick R,et al,2017.Faster R-CNN:Towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,39(6):1137-1149. | |
Ruan Shunling, Li Shaobo, Lu Caiwu,et al,2021.Road negative obstacle detection in open-pit mines based on multi scale feature fusion[J].Journal of China Coal Society,46(Supp.2):1170-1179. | |
Shi T D, Zhong D Y, Bi L,2021.A new challenge:Detection of small-scale falling rocks on transportation roads in open-pit mines [J].Sensors,21(10):3548. DOI: https://doi.org/10.3390/s21103548 .
doi: https://doi.org/10.3390/s21103548 |
|
Tan M, Pang R, Le Q V,2020.EfficientDet:Scalable and efficient object detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle:IEEE: 19874970.DOI: 10.1109/CVPR42600.2020.01079 .
doi: 10.1109/CVPR42600.2020.01079 |
|
Wang C Y, Bochkovskiy A, Liao H Y M,2021.Scaled-YOLOv4:Scaling cross stage partial network[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Nashville:IEEE: 21413564.DOI: 10.1109/CVPR46437.2021.01283 .
doi: 10.1109/CVPR46437.2021.01283 |
|
Wang W S, Wang S, Zhao Y Q,et al,2023a.Real-time obstacle detection method in the driving process of driverless rail locomotives based on DeblurGANv2 and improved YOLOv4[J].Applied Sciences,13(6):3861. DOI: https://doi.org/10.3390/app13063861 .
doi: https://doi.org/10.3390/app13063861 |
|
Wang C Y, Bochkovskiy A, Liao H Y M,2023b.YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Vancouver:IEEE: 23611189.DOI: 10.1109/CVPR52729.2023.00721 .
doi: 10.1109/CVPR52729.2023.00721 |
|
Wang Jie, Ye Mao, Ma Fengshan,2014.Design and implementation of the rockfall monitoring and warning system based on video image identification[J].Journal of Basic Science and Engineering,22(5):952-963. | |
Yang L X, Zhang R Y, Li L D,et al,2021.Simam:A simple,parameter-free attention module for convolutional neural networks[C]//Proceedings of the 38th International Conference on Machine Learning.PMLR,139:11863-11874. | |
陈垦,欧鸥,杨长志,等,2023.基于改进YOLOX的落石检测方法[J].计算机测量与控制,31(11):53-59. | |
高切,李登华,丁勇,2024.基于M-DBT框架的岩质边坡落石跟踪算法研究[J/OL].水利水运工程学报:1-13[2024-01-02].. | |
刘林芽,吴送英,左志远,等,2021.基于YOLOv3算法的山区铁路边坡落石检测方法研究[J].计算机科学,48(增2):290-294. | |
刘孜学,王富斌,虞凯,2022.基于改进YOLOv3的铁路落石检测方法研究与实现[J].高速铁路技术,13(3):52-56,80. | |
卢才武,齐凡,阮顺领,2020.融合目标检测与距离阈值模型的露天矿行车障碍预警[J].光电工程,47(1):40-47. | |
阮顺领,李少博,卢才武,等,2021.多尺度特征融合的露天矿区道路负障碍检测[J].煤炭学报,46(增2):1170-1179. | |
王杰,叶茂,马凤山,等,2014.基于视频图像识别的崩塌落石监测预警系统设计与实现[J].应用基础与工程科学学报,22(5):952-963. |
[1] | 顾清华, 周琼, 王丹. 基于改进YOLOv8的露天矿区行车障碍物检测[J]. 黄金科学技术, 2024, 32(2): 345-355. |
[2] | 阮顺领,阮炎康,卢才武,顾清华. 基于红外图像的矿石传送带托辊异常检测[J]. 黄金科学技术, 2023, 31(1): 123-132. |
[3] | 阮顺领,董莉娟,卢才武,顾清华. 基于RCR _YOLOv4的矿井巷道红外障碍检测研究[J]. 黄金科学技术, 2022, 30(4): 603-611. |
[4] | 王鹏飞,毕林,王李管. 露天矿无人驾驶矿卡速度规划研究[J]. 黄金科学技术, 2022, 30(3): 460-469. |
[5] | 王京华,王李管,毕林. 基于计算机视觉技术的矿井电机车无人驾驶障碍物检测技术[J]. 黄金科学技术, 2021, 29(1): 136-146. |
|