img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (4): 698-706.doi: 10.11872/j.issn.1005-2518.2023.04.183

• 冶炼技术与装备研发 • 上一篇    

SART工艺处理氰化提金循环液的关键技术研究与产业化应用

钱虎1(),隋靖2,赵艳玲3,徐忠敏1()   

  1. 1.招金矿业股份有限公司,山东 招远 265400
    2.山东美华特水处理科技有限公司,山东 招远 265499
    3.沈阳焦煤股份有限公司红阳三矿选煤厂,辽宁 沈阳 111307
  • 收稿日期:2022-12-19 修回日期:2023-06-16 出版日期:2023-08-30 发布日期:2023-09-20
  • 通讯作者: 徐忠敏 E-mail:1380131@stu.neu.edu.cn;xzm89@163.com
  • 作者简介:钱虎(1974-),男,安徽枞阳人,工程师,从事黄金选冶生产工艺技术研究工作。1380131@stu.neu.edu.cn
  • 基金资助:
    “十三五”固废资源化国家重点研发项目子课题“常规氰渣选冶联合无害化处置与全组份利用集成技术工程示范”(SQ2018YFC1902003)

Key Technology Research and Industrial Application of SART Process in the Treatment of Cyanide Gold Leaching Circulating Liquid

Hu QIAN1(),Jing SUI2,Yanling ZHAO3,Zhongmin XU1()   

  1. 1.Zhaojin Mining Co. , Ltd. , Zhaoyuan 265400, Shandong, China
    2.Shandong Meihuate Water Treatment Technology Co. , Ltd. , Zhaoyuan 265499, Shandong, China
    3.Hongyang Three Mines Coal Preparation Plant, Shenyang Coking Coal Co. , Ltd. , Shenyang 111307, Liaoning, China
  • Received:2022-12-19 Revised:2023-06-16 Online:2023-08-30 Published:2023-09-20
  • Contact: Zhongmin XU E-mail:1380131@stu.neu.edu.cn;xzm89@163.com

摘要:

为实现氰化循环液中有价金属的综合回收,通过开展酸化法与SART工艺(硫化—酸化—再循环—浓缩工艺)对比试验,最终确定采用SART工艺对国内黄金行业氰化提金过程中产生的循环液进行净化处理。通过开展SART工艺控制参数的试验研究,并应用于工业化生产,实现了氰化循环在液相中锌和铜的分步回收、分离沉淀,分别产出47.45%的锌泥和54.38%的铜泥,以高品位沉淀物产品加以回收,并将弱络合氰转化成游离NaCN再回到生产系统循环利用,从而降低氰化工艺的成本。SART工艺的应用,既实现了有价金属回收,降低了成本费用,又解决了劳动就业,减轻了后续冶炼及环保压力,取得了较好的经济、环境及社会效益。

关键词: SART工艺, 氰化循环液, 铜泥, 锌泥, 氰化钠

Abstract:

In order to realize the comprehensive recovery of valuable metals in the cyanide circulating liquid,the comparative test and analysis of acidification and SART processes(Vulcanization-Acidification-Recycling-Concentration Process) was conducted,and the application of SART process was finally determined.Then the circulating liquid generated in the cyanide gold extraction process of the domestic gold industry was purified for the first time,and the step-by-step recovery and separation and precipitation of zinc and copper in the liquid phase of the cyanidation cycle were realized.47.45% zinc mud and 54.38% copper sludge were produced respectively,and recovered with high-grade precipitate products.And the weakly complexed cyanide is converted into free sodium cyanide and then returned to the production system for recycling,thereby reducing the cost of the cyanidation process.The application of SART process not only realizes the recovery of valuable metals,reduces the cost,but also solves the employment problem,reduces the pressure of subsequent smelting and environmental protection,and achieves good economic,environmental and social benefits.

Key words: SART process, cyanide circulating fluid, copper mud, zinc sludge, sodium cyanide

中图分类号: 

  • TF831

图1

SART工艺流程图"

表1

酸化法与SART工艺指标对比"

指标名称酸化法SART工艺
投资/万元10 0003 500
建筑面积/m25 0001 400
运行成本元仅药剂成本78.79元/t综合成本25元/t
铜回收率/%9899.8
铜泥品位/%2055.7
锌回收率/%无法回收99.9
投资回收期较长
安全环保性HCN先以气体形式挥发再通过碱液吸收,有HCN气体泄露的安全风险在液相中回收NaCN,无有害气体产生

图2

金翅岭金矿SART工艺布置图"

表2

氰化循环液水质分析"

分析项目质量浓度/(mg·L-1分析项目质量浓度/(mg·L-1
Ag0.19CNtotal10 230
Cu2 340Fe156
Zn1 131CO-
CNwad1 540

表3

3R-O工艺处理前后贫液主要元素组成"

项目产生量AuZnCu
原液1 000 mL-1 131 mg/L2 340.00 mg/L
酸化液1 000 mL-1 020 mg/L46.88 mg/L
酸化渣10.50 g/L-1.05%20.09%

表 4

中和试验结果"

溶液名称CNTCNfCuFePbZn
酸化液86.985.946.881.04<0.121 020
中和液73.270.546.321.04<0.121 010

表5

SART工艺对贫液中金属元素的处理效果"

试验

编号

金属

元素

进水

/(mg·L-1

锌区出水

/(mg·L-1

铜区出水

/(mg·L-1

中和区出水

/(mg·L-1

总回收率/%

SART

试验1

Cu2 3402 360464498.10
Zn1 1311811.199.90

SART

试验2

Cu2 3402 390444298.20
Zn1 1311811.299.90

SART

试验3

Cu2 3402 31064.899.80
Zn1 1312141.399.90

表6

SART工艺处理前后贫液氰化物浓度"

试验编号

进水总氰

/(mg·L-1

中和区出水总氰

/(mg·L-1

中和区出水游离氰/(mg·L-1氰化物总回收率/%
SART试验110 2309 2899 26390.80
SART试验210 2309 4229 40692.10
SART试验310 2309 3609 31591.50

表7

SART工艺回收铜泥和锌泥成分分析结果"

试验编号铜泥品位/%锌泥品位/%
CuZnCuZn
SART试验175.40.50.755.1
SART试验275.50.30.653.3
SART试验376.10.60.454.2

表8

2020—2022年氰化二厂NaCN用量统计"

年份NaCN实际消耗总量/t处理矿量/t

NaCN单耗(100%)

/(kg·t-1

相比2020年

减少量/t

实际回收NaCN

(100%)/t

合计2 191.8
20201 557.31249 1706.25
2021885.76256 0003.46671.55989.2
2022903.04238 9003.78654.271 202.6

表9

净化前后贫液调浆氰化浸出对比试验结果"

样品细度(-400目)占比/%

NaCN质量浓度

/?

CaO质量浓度/?时间/h原矿金品位/(g·t-1渣金品位/(g·t-1金回收率/%NaCN添加量/(kg·m-3CaO量/(kg·t-1备注
试验1-192.040~484.0~6.44066.050.9098.642.79429.06净化前
试验1-292.048~604.0~6.44066.050.9098.6407.93净化后
试验3-190.736~494.0~6.44039.640.8497.882.862318.00净化前
试验3-291.043~544.0~6.44039.640.8097.981.244018.00净化后
试验4-192.240~484.0~6.44045.700.9997.833.252318.00净化前
试验4-292.440~484.0~6.44045.700.9597.921.208518.00净化后

表10

锌泥与标准产品质量对比"

质量要求氰化锌泥标准锌泥分析数据
有价元素Zn(不小于)/%4047.45
杂质元素As(不大于)/%0.4<0.01
范围供炼锌用供炼锌用
水分小于30%23.32%
粒度通过74 μm标准筛的筛下物不小于50%-
外观不应混入外来夹杂物无外来夹杂物

表11

铜泥与标准产品质量对比"

质量要求氰化铜泥标准铜泥分析数据
有价元素Cu(不小于)/%1854.38
杂质元素As(不大于)/%0.4<0.01
范围供炼铜用供炼铜用
水分小于50%21.72%
粒度通过74 μm标准筛的筛下物不小于50%-
外观不应混入外来夹杂物无外来夹杂物

表12

SART工艺的经济效益计算结果"

项目规模产品指标产品价格或成本总价/万元
单位数值单位数值单位数值
合计+2 690.5
锌泥产品收益半成品/t662产品含量/%47.45成品单价/(元·t-122 000+691.1
铜泥产品收益半成品/t869产品含量/%54.38成品单价/(元·t-168 000+3 213.4
氰化钠产品收益半成品/t2 191.8产品含量/%100.00成品单价/(元·t-111 000+2 410.1
氰化回收率提高产生效益投料金属量/kg25 000提高百分比/%0.06金价(元/g)420+630.0
节约废水处理费用减少废水量/t7 306--处理成本/(元·t-180+58.4
成本费用循环液量/m31 725 000--单位成本/(元·m-325-4 312.5
Chen Huajin, Li Fangshi,2005.Progress in the treatment of cyanide-contained waste water[J].Jiangsu Chemical Industry,33(1):39-43.
China Gold Association,2017. Cyanide Copper Mud:T/C [S].Beijing:China Gold Association.
China Gold Association,2021. Cyanide Zinc Mud:T/C [S].Beijing:China Gold Association.
Gao Tengyue, Liu Kuiren, Han Qing,et al,2015.Study on electrodeposition recovery of copper and cyanide from cyanide-containing wastewater[J].Journal of Northeastern University(Natural Science),36(1):81-85.
Hu Yangjia, He Zheng, Zhao Zhiqiang,et al,2018.Development of non-cyanide gold leaching technology:Review and application prospects[J].Gold,39(4):53-58.
Khosravi R, Azizi A, Ghaedrahmati R,et al,2017.Adsorption of gold from cyanide leaching solution onto activated carbon originating from coconut shell—Optimization,kinetics and equilibrium studies[J].Journal of Industrial and Engineering Chemistry,54:464-471.
Kondos P D, Deschênes G, Morrison R M,1995.Process optimization studies in gold cyanidation[J].Hydrometallurgy,39(1/2/3):35-38.
Lan Xinzhe, Zhang Conghui, Dang Xiao’e,et al,1999.Development of cyanide recovery and recycling technology from gold leaching tailings[J].Gold Science and Technology,7(3):40-45.
Li Qian, Dong Siyu, Xu Rui,et al,2020.Gold extraction technology for gold ores and its research progress[J].Gold,41(9):86-101.
Li Yifan, Song Yonghui, Zhou Min,et al,2022.Solvent extraction of metal cyanide complex ions in cyanidation gold extraction wastewater[J].The Chinese Journal of Nonferrous Metals,32(2):536-544.
Molleman E, Dreisinger D,2002.The treatment of copper-gold ores by ammonium thiosulfate leaching[J].Hydrometallurgy,66(1/2/3):1-21.
Niu Guiqiang,2009.Technical reformation and production practice of cyanide process[J].China Mine Engineering,38(5):30-33.
Patil Y B, Paknikar K M,2000.Development of a process for biodetoxification of metal cyanides from waste waters[J].Process Biochemistry,35(10):1139-1151.
Qian Xinming, Honghui Lü, Guo Xiangdong,1997.Study on reutilization of resin adsorbing tailing liquid[J].Gold,18(6):51-53.
Shen Xiande,2014.Debugging and evaluation of treatment of pregnant solutions from heap leaching in Zijinshan gold mine by acidification-sulphidization process[J].Gold,35(11):76-80.
Sun Zhaoxue,2011.Practical Manual of Precious Metal Production Technology[M].Beijing:Metallurgical Industry Press.
Tan Xifa,2014.Pilot test study on treating adsorption lean solution of Zijinshan gold mine by acidification-sulphidization process[J].Gold,35(10):74-78.
Wang Jianzheng, Kong Lingqiang, Wang Minjie,et al,2001.Experimental research on zinc and copper removal from cyanide barren solution and its recycled leaching utilization[J].Gold,42(5):79-81,86.
Wang Qianru,1994.Rational utilization of poor liquid to increase economic benefit[J].Conservation and Utilization of Mineral Resources,(5):45-48.
White D M, Pilon T A, Woolard C,2000.Biological treatment of cyanide containing wastewater[J].Water Research,34(7):2105-2109.
Wu Zaijiu,2013.Technical study of high copper-bearing cyanide barren solution[J].Nonferrous Metals Engineering and Research,(3):18-20.
Xie Minxiong, Li Zhengyao, Sun Wenbo,2010. Necessity and comprehensive assessment of lean solution processing project[J].Gold Science and Technology,18(6):73-77.
Xu Tianyun, Xu Zhengchun,1985.Cyaniding and Smelting of Gold[M].Shenyang:Shenyang Gold College.
Yang Jing, Zhang Yali, Yu Xianjin,et al,2012.Research status on treating methods of cyanide waste solution[J].Hydrometallurgy of China,31(5):278-280.
Yu Xianjin, Zhang Yali, Fang Tao,et al,2014.Process and kinetics of copper adsorption from cyaniding barren solution with ion exchange resin[J].Nonferrous Metals(Extractive Metallurgy),(5):8-11.
Zhang Manman, Feng Zhanli, Wang Junqiang,et al,2019.Research progress of cyanide-contained wastewater treatment in gold hydrometallurgy[J].Chemical Industry and Engineering,36(1):2-9.
Zhong Chongbo, Wang Chenggong, Chen Bingchen,2001.Review of the dangers of cyanides and their treatment methods[J].Metal Mine,6(5):44-47.
陈华进,李方实,2005.含氰废水处理方法进展[J].江苏化工,33(1):39-43.
高腾跃,刘奎仁,韩庆,等,2015.电沉积回收氰化尾液中铜和氰化物的研究[J].东北大学学报(自然科学版),36(1):81-85.
胡杨甲,贺政,赵志强,等,2018.非氰浸金技术发展现状及应用前景[J].黄金,39(4):53-58.
兰新哲,张聪惠,党晓娥,等,1999.提金氰化物回收循环再用技术新进展[J].黄金科学技术,7(3):40-45.
李骞,董斯宇,许瑞,等,2020.金矿提金技术及其研究进展[J].黄金,41(9):86-101.
李一凡,宋永辉,周民,等,2022.氰化提金废水中金属氰络合离子的溶剂萃取[J].中国有色金属学报,32(2):536-544.
牛桂强,2009.氰化工艺技术改造与生产实践[J].中国矿山工程,38(5):30-33.
钱新明,吕虹辉,郭向东,1997.树脂吸附尾液再利用的应用研究[J].黄金,18(6):51-53.
沈贤德,2014.酸化—硫化沉淀工艺处理紫金山金矿堆浸贵液工业调试及评价[J].黄金,35(11):76-80.
孙兆学,2011.贵金属生产技术实用手册[M].北京:冶金工业出版社.
谭希发,2014.酸化—硫化沉淀工艺处理紫金山金矿吸附贫液扩大试验研究[J].黄金,35(10):74-78.
王建政,孔令强,王敏杰,等,2021.氰化贫液脱除锌铜与循环浸出利用试验研究[J].黄金,42(5):79-81,86.
王倩儒,1994.合理利用贫液提高经济效益[J].矿产保护与利用,(5):45-48.
吴在玖,2013.高含铜氰化贫液处理工艺研究[J].有色冶金设计与研究,(3):18-20.
谢敏雄,李政要,孙文波,2010.氰化贫液除杂的必要性及其综合评估[J].黄金科学技术,18(6):73-77.
徐天允,徐正春,1985.金的氰化与冶炼[M].沈阳:沈阳黄金专科学校.
杨静,张亚莉,于先进,等,2012.氰化贫液处理方法研究现状[J].湿法冶金,31(5):278-280.
于先进,张亚莉,房涛,等,2014.离子交换法处理氰化贫液中铜的工艺及动力学[J].有色金属(冶炼部分),(5):8-11.
张曼曼,冯占立,王军强,等,2019.黄金湿法冶炼含氰废水处理研究进展[J].化学工业与工程,36(1):2-9.
仲崇波,王成功,陈炳辰,2001.氰化物的危害及其处理方法综述[J].金属矿山,6(5):44-47.
中国黄金协会,2017. 氰化铜泥:T/C [S].北京:中国黄金协会.
中国黄金协会,2021. 氰化锌泥:T/C [S].北京:中国黄金协会.
[1] 王宝胜. 氰化作业中降低氰化钠消耗的实践[J]. J4, 2007, 15(6): 43-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 任广智, 赵玉锁, 肖振, 卿敏, 魏峰, 缪振平. 河北峪耳崖金矿床矿体赋存规律及找矿预测[J]. J4, 2010, 18(4): 27 -32 .
[2] 刘远华, 杨贵才, 张轮, 齐金忠, 李文良. 西秦岭阳山超大型金矿床花岗岩岩石地球化学特征[J]. J4, 2010, 18(6): 1 -7 .
[3] 林洪勇. 双鸭山七星河金矿矽卡岩中金矿化地质特征、成矿规律及矿床成因探讨[J]. J4, 2008, 16(3): 26 -29 .
[4] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[5] 黄俊,吴家富,鲁如魁 ,夏立元. 内蒙古兵图金矿成因探讨及找矿方向[J]. J4, 2010, 18(4): 1 -5 .
[6] 张华全,张维昕,李洪杰. 山东胶莱盆地金矿成矿条件及找矿方向[J]. J4, 2008, 16(2): 12 -17 .
[7] 刘健 ,樊满华 ,邓志高 ,张青松 ,郑成英. 那林金矿全面留矿法试验研究[J]. J4, 2008, 16(6): 48 -50 .
[8] 徐述平, 杨立强, 高帮飞. 鲁西地区金矿类型与找矿方向[J]. J4, 2007, 15(5): 18 -23 .
[9] 臧恩光,衣存昌,张春晓. 黑龙江桦南砾岩金矿地质特征及找矿标志[J]. J4, 2008, 16(2): 29 -32 .
[10] 胡琴霞, 孙彬, 亢瑜, 李淑芳, 张圣潇. 甘肃北金山金矿地质特征及成因[J]. J4, 2010, 18(6): 18 -21 .