img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (2): 349-358.doi: 10.11872/j.issn.1005-2518.2023.02.166

• 冶炼技术与装备研发 • 上一篇    

电沉积法从硫氰酸盐浸金液回收金的试验研究

曾超聪1(),张广盛2,吴为荣2,黄万抚1,3,4(),李新冬3,4,王泽凯1,刘观发1   

  1. 1.江西理工大学资源与环境工程学院,江西 赣州 341000
    2.江西三和金业有限公司,江西 德兴 334200
    3.江西理工大学赣州市赣江流域水质安全保障技术创新中心,江西 赣州 341000
    4.江西理工大学赣州市流域污染模拟与控制重点实验室,江西 赣州 341000
  • 收稿日期:2022-11-07 修回日期:2023-02-15 出版日期:2023-04-30 发布日期:2023-04-27
  • 通讯作者: 黄万抚 E-mail:1697284463@qq.com;sim2008@sina.com
  • 作者简介:曾超聪(1997-),男,江西赣州人,硕士研究生,从事稀贵金属冶金研究工作。1697284463@qq.com
  • 基金资助:
    国家自然科学基金项目“超细粒群在离心流化场内的流膜复合运动规律及松散分选理论研究”(51864017)

Experimental Study on Recovery of Gold from Ammonium Thiocyanate Leaching Solution by Electrodeposition

Chaocong ZENG1(),Guangsheng ZHANG2,Weirong WU2,Wanfu HUANG1,3,4(),Xindong LI3,4,Zekai WANG1,Guanfa LIU1   

  1. 1.School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
    2.Jiangxi Sanhe Gold Industry Co. , Ltd. , Dexing 334200, Jiangxi, China
    3.Ganzhou Innovation Center for Water Quality Security Technology at Ganjiang River Basin, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
    4.Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Tech-nology, Ganzhou 341000, Jiangxi, China
  • Received:2022-11-07 Revised:2023-02-15 Online:2023-04-30 Published:2023-04-27
  • Contact: Wanfu HUANG E-mail:1697284463@qq.com;sim2008@sina.com

摘要:

针对硫氰酸盐浸金液金回收效率低且成本高等问题,利用电沉积法从硫氰酸铵浸金液中回收金。采用单因素法研究了阳极材料、阴极材料、极间距、槽电压、溶液pH值和温度对金沉积率的影响,结果表明:以石墨棒作阳极、自制电极作阴极,在极间距为10 mm、槽电压为4 V、溶液pH=12和温度为35 ℃的条件下,电解2 h,金沉积率达到98.95%。采用响应面法研究了槽电压、溶液pH值与溶液温度之间的交互作用及其对金沉积率的影响,结果表明:各因素对金沉积率的影响程度依次为槽电压>溶液pH值>溶液温度,并建立了电沉积金响应面回归模型。在槽电压为4.10 V、溶液pH=12.40和温度为39.58 ℃的最佳条件下,模型预测值为99.06%,试验平均值为99.04%,二者结果非常接近,证明该模型能够对金沉积率进行准确的分析预测。本研究进一步完善了硫氰酸盐提金工艺理论体系。

关键词: 硫氰酸盐浸金液, 电沉积法, 电极材料, 金沉积率, 响应曲面法

Abstract:

The leaching agent cyanide has been on the verge of elimination due to its great harm to the environment and human health.The non-cyanide agent thiocyanate as an efficient and environmentally friendly gold leaching agent has become the object of research by scholars both domestic and foreign.However,the recovery methods from thiocyanate leachate are less studied,and there are problems with low efficiency and high cost of gold recovery.Therefore,it is urgent to find a highly productive,low-cost,and simple method to recover gold from leaching solution efficiently.On the basis of the above problems,ammonium thiocyanate was used for the leaching test of bio-oxidized slag from a difficult gold concentrate,and recovered gold from the leaching solution by electrodeposition.The single factor method was used to study the influence of various factors on the gold deposition rate.The results show that the self-made electrode with a large surface area,good corrosion resistance,and high metal deposition efficiency is an excellent cathode.The graphite rods with good conductivity,not involved in the reaction process,reused,is a good choice for anode materials.Stainless steel rods are not suitable as electrode materials due to their susceptibility to corrosion.Under the conditions of electrode spacing of 10 mm,cell voltage of 4 V,solution pH value of 12,and solution temperature of 35 ℃,using a graphite rod as an anode and a self-made electrode as a cathode,the gold deposition rate can reach 98.95%.The interaction between tank voltage,solution pH value,and solution temperature and the effect on gold deposition rate were investigated by response surface methodology,and the electrodeposition gold response surface regression model was established.The P value and mismatch value of the model are within a reasonable range,and the predicted value and actual value of the gold deposition rate basically fell in a straight line,shows that the model fits well and is highly reliable.The correlation between the test factors and the gold deposition rate can be described.The final results show that the degree of each factor on the gold deposition rate is cell voltage>solution pH value>solution temperature,among them,the interaction between cell voltage and solution pH value is the most significant,and the interaction between solution pH value and solution temperature is the least significant.Under the optimal conditions of cell voltage 4.10 volts,solution pH value of 12.40,and solution temperature of 39.58 ℃,the predicted value of the model is 99.06%,and the experimental average value is 99.04%.The two results are remarkably close,which proves that the model can accurately analyze and predict the gold deposition rate.This study further improves the theoretical system of thiocyanate gold extraction process.

Key words: thiocyanate leaching solution, electrodeposition method, electrode material, gold deposition rate, response surface analysis

中图分类号: 

  • TF831

图1

电解原液制备流程图"

表1

电解原液主要离子含量"

离子种类质量浓度/(mg·L-1离子种类质量浓度/(mg·L-1
Au+15.25Pb2+0.05
Fe3+520Ag+2.69
SCN-1 718.712Cu2+11.25

图2

不同阴极材料沉积金的效果"

图3

阳极材料在电沉积过程中的效果"

图4

极间距在电沉积过程中的影响"

图5

不同槽电压沉积金的效果"

图6

溶液pH值对金沉积率的影响"

图7

溶液温度对金沉积率的影响"

表2

试验方案及结果"

序号ABC金沉积率/%
实际值预测值残差值
100099.1098.810.2860
210-195.5395.510.0200
300098.8998.810.0760
4-10-190.8191.02-0.2075
50-1194.2994.43-0.1412
6-1-1090.2390.070.1613
700098.9598.810.1360
81-1094.7694.83-0.0662
9-11091.5491.470.0663
100-1-193.5193.460.0463
11-10191.7091.72-0.0200
1210197.7797.560.2075
1300098.8198.81-0.0040
1401196.6196.66-0.0462
1511096.8997.05-0.1612
1600098.3298.81-0.4940
1701-195.0194.870.1413

表3

回归模型方差分析结果"

项目平方和自由度均方差FP显著性
总计149.6516
模型149.11916.57213.97< 0.0001显著
A-槽电压53.41153.41689.75< 0.0001
B-溶液pH值6.5916.5985.09< 0.0001
C-溶液温度3.8013.8049.010.0002
AB0.168110.16812.170.1841
AC0.455610.45565.880.0457
BC0.168110.16812.170.1841
A242.60142.60550.17< 0.0001
B221.85121.85282.26< 0.0001
C211.89111.89153.62< 0.0001
残差0.542070.0774
失拟误差0.191930.06400.73070.5853不显著
纯误差0.350140.0875

图8

金沉积率实际值与预测值分析图"

图9

响应曲面图"

Batoeva A A, Tsybikova B A, Ryazantsev A A,2010.Catalytic oxidation of thiocyanates in an acid medium[J].Russian Journal of Applied Chemistry,83(6):993-996.
Cao Geng, Guo Junkang, Ren Qian,et al,2021.Research progress and development trend of non-cyanide gold leaching[J].Applied Chemical Inustry,50(6):1672-1676.
Gianni C, Lorenzo L, Antonio S,2014.Optimization of process parameters using a response surface method for minimizing power consumption in the milling of carbon steel[J].Journal of Cleaner Production,66:309-316.
Huang Biaolin, Huang Lijinhong, Zeng Xiangrong,et al,2021.Leaching of gold from gold concentrate biooxidized slag using ammonium thiocyanate[J].Hydrometallurgy,40(6):451-456.
Jia Yujuan, Wang Xiaohui, Cheng Wei,et al,2019.Research progress on non-cyanide leaching of refractory gold ores[J].Chinese Journal of Engineering,41(3):307-315.
Kholmogorov A G, Kononova O N, Pashkov G L,et al,2002.Thiocyanate solutions in gold technology[J].Hydrometallurgy,64(1):43-48.
Kononova O N, Kholmogorov A G, Danilenko N V,et al,2005.Sorption of gold and silver on carbon adsorbents from thiocyanate solutions[J].Carbon,43(1):17-22.
Kononova O N, Kholmogorov A G, Danilenko N V,et al,2008.Recovery of silver from thiosulfate and thiocyanate leach solutions by adsorption on anion exchange resins and activated carbon[J].Hydrometallurgy,88:189-195.
Li Guichun, Meng Qi, Kang Hua,et al,2020.Electrodeposition of gold in iodine leaching solution[J].Chinese Journal of Nonferrous Metals,30(8):1925-1933.
Li J, Safarzadeh M S, Moats M S,et al,2012a.Thiocyanate hydrometallurgy for the recovery of gold,Part V:Process alternatives for solution concentration and purification[J].Hydrometallurgy,113/114:31-38.
Li J, Safarzadeh M S, Moats M S,et al,2012b.Thiocyanate hydrometallurgy for the recovery of gold,Part IV:Solvent extraction of gold with Alamine 336 [J].Hydrometallurgy,113/114:25-30.
Li Qian, Dong Siyu, Xu Rui,et al,2020.Gold extraction technology for gold ores and its research progress[J].Gold,41(9):86-101.
Ma C J, Li J Y, Liu R J,2015.A review of thiocyanate hydrometallurgy for the recovery of gold[J].Applied Mechanics and Materials,768:53-61.
Neil P G, Nie Guolin,1991.The affinity of activated carbon to some gold(I)complexes[J].Hydrometallurgy,(4):29-34.
Qiu Yibing,2008.Experimental Design and Data Processing[M].Hefei:China University of Science and Technology Press.
Shen Cailong, Yue Fulian, Zhang Guangji,et al,2021.Variation of DO concentration in biological pretreatment of gold ore and its effect[J].The Chinese Journal of Nonferrous Metals,31(1):106-113.
Wang Z, Chen D, Chen L,2008.Gold cementation from thiocyanate solutions by iron powder[J].Minerals Engineering,20(6):581-590.
White H A,1905.The solubility of gold in thiosulphates and thiocyanates[J].South African Journal of Science,1(1):211-215.
Wu Hao, Huang Wanfu, Qiu Feng,et al,2016.Research progress of gold leaching with thiocyanate[J].Noble Metal,37(3):72-78.
Yang Bo, Wang Xiao, Xie Yonggang,et al,2021.Study on the processing mineralogy of a refractory gold ores from Qinghai Province[J].Gold Science and Technology,29(3):467-475.
Bielike Yeernaer,2018.Discussion on gold resources and geological exploration situation in China[J].Nonferrous Metals in the World,(11):133-134.
Zeng Xiangrong,2020.Non-cyanide Leaching Agent-ammonium Thiocyanate Gold Leaching Process and Mechanism[D]. Ganzhou:Jiangxi Unversity of Science and Technology.
Zhai Xiujing, Xiao Bijun, Li Naijun,2008.Reduction and Precipitation[M].Beijing:Metallurgical Industry Press.
曹赓,郭军康,任倩,等,2021.非氰化法浸金的技术进展及发展趋势[J].应用化工,50(6):1672-1676.
黄彪林,黄李金鸿,曾祥荣,等,2021.用硫氰酸铵从金精矿生物氧化渣中浸出金[J].湿法冶金,40(6):451-456.
贾玉娟,王晓辉,程伟,等,2019.难处理金矿非氰浸金研究进展[J].工程科学学报,41(3):307-315.
李桂春,孟齐,康华,等,2020.碘化浸出液电沉积金工艺[J].中国有色金属学报,30(8):1925-1933.
李骞,董斯宇,许瑞,等,2020.金矿提金技术及其研究进展[J].黄金,41(9):86-101.
Neil P G,聂国林,1991.活性炭对某些金(I)络合物的亲合力[J].湿法冶金,(4):29-34.
邱轶兵,2008.试验设计与数据处理[M].合肥:中国科学技术大学出版社.
沈蔡龙,岳馥莲,张广积,等,2021.金矿生物预氧化中溶解氧浓度的变化及其影响[J].中国有色金属学报,31(1):106-113.
吴浩,黄万抚,邱峰,等,2016.硫氰酸盐浸金研究进展[J].贵金属,37(3):72-78.
杨波,王晓,解永刚,等,2021.青海省某难浸金矿的工艺矿物学研究[J].黄金科学技术,29(3):467-475.
叶尔那尔·别力克,2018.关于我国金矿资源与地质勘查形势的探讨[J].世界有色金属,(11):133-134.
曾祥荣,2020.非氰浸出剂—硫氰酸铵浸金工艺及机理研究[D].赣州:江西理工大学.
翟秀静,肖碧君,李乃军,2008.还原与沉淀[M].北京:冶金工业出版社.
[1] 高世雄,陈国宝,杨洪英,马鹏程. 含锑金矿预处理脱锑技术的研究进展[J]. 黄金科学技术, 2020, 28(6): 792-799.
[2] 宋翔宇,张振,王君玉,李荣改. 含金硫化矿碱性氧化提金研究现状与展望[J]. 黄金科学技术, 2020, 28(6): 940-954.
[3] 肖力,王永良,钱鹏,丁剑,叶树峰. 非氰提金技术研究进展[J]. 黄金科学技术, 2019, 27(2): 292-301.
[4] 宋言, 杨洪英, 佟琳琳, 马鹏程, 金哲男. 甘肃某复杂难处理金矿细菌氧化—氰化实验研究[J]. 黄金科学技术, 2018, 26(2): 241-247.
[5] 赵鹤飞,杨洪英*,张勤,佟琳琳,金哲男,陈国宝. 硫代硫酸盐浸金各因素影响研究现状[J]. 黄金科学技术, 2018, 26(1): 105-114.
[6] 党晓娥,王璐,孟裕松,宋永辉,吕超飞 . 某环保药剂的浸金性能及贵液中金的活性炭吸附特性[J]. 黄金科学技术, 2017, 25(6): 114-120.
[7] 段敏静,梁长利,许宝泉,陈陵康 . 生物提金氧化液中铁的选择性沉淀[J]. 黄金科学技术, 2017, 25(6): 121-126.
[8] 宋永辉,姚迪,张珊,田宇红,兰新哲. 三维电极处理氰化废水的研究[J]. 黄金科学技术, 2017, 25(5): 116-121.
[9] 杨玮,王刚,曹欢,张凯. 含铜金精矿焙烧—酸浸对金、银浸出率的影响[J]. 黄金科学技术, 2017, 25(5): 122-126.
[10] 刘倩,杨洪英,佟琳琳. Phanerochaete chrysosporium降解碳质金矿中元素碳高关联度变量的筛选[J]. 黄金科学技术, 2017, 25(5): 140-144.
[11] 张玉秀,郭德庚,李媛媛,张广积 . 含砷难处理金精矿生物预氧化过程中砷价态的变化及其对细菌的影响[J]. 黄金科学技术, 2017, 25(4): 106-112.
[12] 党晓娥,孟裕松,王璐,宋永辉,吕超飞,贠亚新. 黄金冶炼两大新技术应用现状与发展趋势探讨[J]. 黄金科学技术, 2017, 25(4): 113-121.
[13] 王硕. 甘肃某金矿浸金工艺试验研究[J]. 黄金科学技术, 2017, 25(4): 122-127.
[14] 盛勇,刘庭耀,韩丽辉,刘青. 含金废液脱氰过程固—液搅拌的数值模拟[J]. 黄金科学技术, 2016, 24(5): 108-114.
[15] 肖力,吕翠翠,王永良,叶树峰. 硫代硫酸钠—铁氰化钾体系提取含金物料中金银的研究[J]. 黄金科学技术, 2016, 24(5): 115-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!