img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (2): 232-251.doi: 10.11872/j.issn.1005-2518.2023.02.124

• 关键金属矿产勘查进展专栏 • 上一篇    下一篇

湘南新田岭矽卡岩型白钨矿床中石榴子石的成分特征及其对钨成矿作用的启示

李博(),邹少浩(),许德如(),陈喜连,王雪娜,王华   

  1. 东华理工大学核资源与环境国家重点实验室,江西 南昌 330013
  • 收稿日期:2022-09-20 修回日期:2022-12-11 出版日期:2023-04-30 发布日期:2023-04-27
  • 通讯作者: 邹少浩,许德如 E-mail:leebo0813@foxmail.com;shaohaozou@hotmail.com;xuderu@gig.ac.cn
  • 作者简介:李博(1995-),男,河南濮阳人,硕士研究生,从事热液矿床研究工作。leebo0813@foxmail.com
  • 基金资助:
    国家自然科学基金项目“江南古陆金(多金属)大规模成矿的机理研究”(41930428);“胶体金的稳定性及其对金富集成矿的作用:以豫西吉家洼金矿床为例”(42002089);江西省自然科学基金项目“岩浆热液过程中铌钽差异性富集机理研究——以江西省宜春Ta-Nb矿床和黄山Nb-Ta矿床为例”(20224BAB203036)

Composition Characteristics of Garnet in Xintianling Skarn-type Scheelite Deposit,South Hunan Province and Its Implications for the Tungsten Mineralization

Bo LI(),Shaohao ZOU(),Deru XU(),Xilian CHEN,Xuena WANG,Hua WANG   

  1. State Key Laboratory of Nuclear Resources and Environment,East China University of Technology,Nanchang 330013,Jiangxi,China
  • Received:2022-09-20 Revised:2022-12-11 Online:2023-04-30 Published:2023-04-27
  • Contact: Shaohao ZOU,Deru XU E-mail:leebo0813@foxmail.com;shaohaozou@hotmail.com;xuderu@gig.ac.cn

摘要:

新田岭矿床是典型的矽卡岩型白钨矿床,与侏罗纪花岗岩侵入体有关,查明其成矿流体演化历史,对于探讨新田岭矿床成因和理解钨矿床成矿过程具有重要意义。以新田岭矿床普遍存在的矽卡岩矿物——石榴子石为研究对象,运用扫描电镜、EPMA和LA-ICP-MS等技术对石榴子石的结构、主微量元素和U-Pb年龄进行分析。根据石榴子石在背散射图像下显示的结构特征,可将新田岭矿床中的石榴子石划分为3个世代:早阶段为暗色石榴子石(Grt1);中阶段为具有明显震荡环带的石榴子石(Grt2),可划分为细环带(Grt2-1)和粗环带(Grt2-2);晚阶段为亮色石榴子石(Grt3)。通过对Grt2进行LA-ICP-MS U-Pb定年分析,确定其成岩年龄为(159.5±3.0)Ma,与该地区细粒斑状黑云母花岗岩的成岩时代(164~157 Ma)在分析误差范围内基本一致。Grt1、Grt2-1和Grt3均具有轻稀土亏损、重稀土富集的“左倾型”稀土配分模式,其中Grt1具有较明显的Eu负异常,Grt2-1具有较弱的Eu负异常,Grt3具有微弱的Eu负异常;Grt2-2具有轻重稀土亏损、中稀土富集的“驼峰型”配分模式,具有较弱的Eu正异常。从Grt1到Grt3,石榴子石中Mn、W含量呈现先下降后上升的变化趋势,Grt3中的W含量高于Grt2但低于Grt1。新田岭矿床石榴子石的稀土配分模式与微量元素组成表明,该矿床的成矿作用经历了多阶段热液过程,石榴子石形成过程中流体的氧逸度和温度先升高后降低,压力和pH值先降低后升高。此外,石榴子石中的钨含量变化暗示着新田岭矿床中钨矿化主要发生在退变质阶段,而白钨矿形成后在退变质晚期可能经历了溶解—再沉淀的过程。

关键词: 新田岭钨矿床, 矽卡岩, 石榴子石, 石榴子石U-Pb定年, LA-ICP-MS, EPMA

Abstract:

The Xintianling deposit is one of the largest skarn-type scheelite deposits in South China,and its mineralization has undergone complex magmatic and hydrothermal processes.Taking the skarn garnet in the Xintianling deposit as the research object,the U-Pb dating,in-situ major and trace element analysis of garnet were carried out by EPMA and LA-ICP-MS in-situ micro-area testing techniques.The U-Pb dating reveals that the age of ore-related garnet in Xintianling deposit is ca.(159.5±3.0)Ma,which is consistent with that of the fine-grained porphyritic biotite granite(164~157 Ma)of the Qitianling rock mass,indicating that the Xintianling tungsten mineraliztion is closely related to the Qitianling rock mass.Based on the mineral assemblages and backscattering images,it is determined that there are three generations of garnet in the Xintianling tungsten deposit.According to the structural characteristics of garnets in the backscattered images,the garnets in the Xintianling deposit can be divided into three generations,namely,the early stage dark garnet(Grt1),the middle stage garnet with obvious oscillation zone(Grt2) and the late stage bright garnet (Grt3).Among them,Grt2 can be divided into Grt2-1 with oscillatory zones and Grt2-2 with thick oscillatory zones.Grt1,Grt2-1and Grt3 show the left-skewed REE patterns with LREE depleted and HREE enrichment.Grt1 has an obvious negative Eu anomaly,Grt2-1 has a weak Eu negative anomaly,and Grt3 has a weak Eu negative anomaly.In contrast,Grt2-2 has a “hump-type” REE pattern with LREE enrichment and HREE depleted,and the weak Eu positive anomaly.From Grt1 to Grt3,the content of Mn in garnet showes a trend of first decreasing and then rising,and the W content in Grt3 is higher than Grt2 but lower than Grt1.These results suggest that the Xintianling deposit has experienced multiple hydrothermal processes,and the oxygen fugacity and temperature of the ore fluid first increas and then decreases,and the pressure pH value first decreases and then increases during the ore-forming processes.Combined with the variations of W content in garnet from different mineralization stages,it is considered that the mineralization of tungsten in the Xintianling deposit mainly occurs in the retrograde metamorphic stage,and undergoes the process of dissolution-reprecipitation in the late retrograde metamorphic stage.

Key words: Xintianling tungsten deposit, skarn, garnet, U-Pb dating of garnet, LA-ICP-MS, EPMA

中图分类号: 

  • P611

图1

中国大地构造简图及研究区位置(a)[审图号:GS(2019)1652号](修改自Sun et al.,2017)与湘东南钨锡矿床地质图(b)(修改自Peng et al.,2006)"

表1

骑田岭岩体和新田岭矿床成岩成矿定年结果"

岩体(矿床)名称岩性定年方法年龄/Ma文献来源
骑田岭花岗岩中粒黑云母二长花岗岩锆石U-Pb定年165.0±3.1章荣清,2015
骑田岭花岗岩细粒黑云母花岗岩锆石U-Pb定年164.0±0.6章荣清,2015
骑田岭花岗岩花岗斑岩锆石U-Pb定年147.5±0.5章荣清,2015
骑田岭花岗岩中粒斑状角闪石黑云母二长花岗岩锆石U-Pb定年167.5±1.7刘勇等,2011
骑田岭花岗岩中粒斑状角闪石黑云母二长花岗岩锆石U-Pb定年155.4±4.3刘勇等,2011
骑田岭花岗岩角闪石黑云母二长花岗岩锆石U-Pb定年163~160朱金初等,2009
骑田岭花岗岩黑云母花岗岩锆石U-Pb定年157~156朱金初等,2009
骑田岭花岗岩细粒(有时含斑)黑云母花岗岩锆石U-Pb定年150~146朱金初等,2009
骑田岭花岗岩角闪黑云母花岗岩黑云母40Ar-39Ar定年157.5±0.3毛景文等,2004
新田岭钨矿退化蚀变岩黑云母40Ar-39Ar定年157.1±0.2毛景文等,2004
新田岭钨矿退化蚀变岩辉钼矿Re-Os定年161.8±2.2章荣清,2015
新田岭钨矿石英脉辉钼矿Re-Os定年159.1±2.6袁顺达等,2012
新田岭钨矿石英脉石英流体包裹体Rb-Sr定年157.4±3.2蔡明海等,2008

图2

新田岭矿床矽卡岩矿石手标本照片(a)进变质阶段晚期,白钨矿分布于石榴子石矽卡岩与透辉石矽卡岩之间;(b)早期退变质阶段,大量白钨矿与石英、石榴子石共生;(c)晚期退变质阶段,白钨矿总量较少但可在石英脉中形成较大的颗粒Grt-石榴子石;Sch-白钨矿;Qtz-石英;Act-阳起石;Di-透辉石;Sulfide-硫化物"

图3

新田岭矽卡岩型白钨矿床地质图(修改自章荣清,2015)1.中—上石炭统壶天群白云质灰岩;2.下石炭统梓门桥组砂岩;3.下石炭统测水组砂岩;4.下石炭统石磴子组灰岩;5.下石炭统岩关阶上段钙质页岩白云质灰岩和砂页岩;6.下石炭统岩关阶下段钙质页岩;7.细粒黑云母花岗岩;8.中粒黑云母二长花岗岩;9.花岗斑岩;10.矽卡岩矿体;11.断层"

图4

新田岭矿床矿物组合特征及石榴子石种类与结构(a)石榴子石矽卡岩与石英脉薄片;(b)蚀变花岗斑岩薄片,白钨矿与石榴子石、石英、方解石共存;(c)富白钨矿矽卡岩与石英脉薄片;(d)石榴子石矽卡岩薄片,石榴子石与石英、绿帘石、阳起石和萤石共存,方解石脉切穿石榴子石和石英;(e)与石英共生的3代石榴子石;(f)含白钨矿石英脉中的2代石榴子石,石英脉中见黄铁矿;(g)与石英、绿帘石共生的3代石榴子石被含磁铁矿的方解石脉切穿;(h)自形的石榴子石颗粒被含磁铁矿的方解石脉部分取代;(i)石榴子石矽卡岩薄片;(j)与石榴子石共生的白钨矿颗粒,被方解石部分取代;(k)阴极发光下的3代白钨矿;Grt-石榴子石;Sch-白钨矿;Qtz-石英;Cal-方解石;Py-黄铁矿;Mag-磁铁矿;Ep-绿帘石;Fl-萤石;Act-阳起石;(a),(b),(c),(d),(i)为超景深照片;(e)~(h)为石榴子石BSE照片;(j)为正交偏光照片;(k)为白钨矿CL照片"

表2

新田岭矿床石榴子石主量元素电子探针(EPMA)分析结果"

测试点位岩石类型成分总计
MgOAl2O3SiO2TiO2CaOWO3FeOTMnONa2OSnO2MoO3
24a-1B-2-006(A6)Grt10.0114.6635.070.7233.23BDL10.742.77BDLBDL0.0297.22
25c-2B-1-003(A3)Grt10.019.0635.000.1432.95BDL18.002.47BDLBDLBDL97.63
25c-2B-1-005(A4)Grt10.0412.8334.740.6131.090.0513.194.240.01BDL0.0196.80
25c-2B-1-006(A6)Grt10.0310.4534.150.7031.60BDL16.433.69BDLBDLBDL97.04
33-4B-1-009(A5)Grt10.0514.3935.990.8632.69BDL11.352.950.03BDLBDL98.31
24a-1B-1-003(A3)Grt2-10.039.2633.720.6132.880.0717.682.370.01BDL0.0296.65
24a-1B-1-004(A4)Grt2-10.0311.9934.520.5232.71BDL14.422.740.04BDLBDL96.97
24a-1B-1-005(A5)Grt2-10.0611.5634.270.4028.59BDL15.716.030.02BDLBDL96.62
24a-1B-2-002(A2)Grt2-10.0311.4434.520.5233.080.0715.022.32BDLBDL0.0297.02
24a-1B-2-003(A3)Grt2-10.039.9734.030.5832.020.0917.442.74BDLBDLBDL96.91
24a-1B-2-004(A4)Grt2-10.0311.2134.600.5032.920.0315.382.440.01BDLBDL97.11
24a-1B-2-005(A5)Grt2-10.0211.2834.440.4232.210.0415.182.70BDLBDL0.0396.31
06b-1B-1-004(A4)Grt2-10.0510.9535.450.1032.940.1115.702.510.01BDLBDL97.80
06b-1B-1-005(A5)Grt2-10.0311.1635.610.1233.650.0415.611.95BDLBDLBDL98.18
06b-1B-1-007(A7)Grt2-10.034.9934.820.0233.91BDL23.131.030.01BDLBDL97.93
06b-1B-2-004(A4)Grt2-10.018.2834.400.0832.660.0118.872.32BDLBDLBDL96.63
06b-1B-2-005(A5)Grt2-10.019.9935.150.0932.86BDL16.772.400.01BDLBDL97.27
06b-1B-2-006(A6)Grt2-10.0311.2335.230.2433.10BDL15.302.280.01BDLBDL97.41
06b-1B-2-007(A7)Grt2-10.0410.0535.140.2933.220.0216.752.14BDLBDLBDL97.65
06b-1B-2-008(A8)Grt2-10.0110.0035.350.0633.59BDL16.681.81BDLBDLBDL97.48
06b-1B-2-009(A9)Grt2-10.027.6834.760.0633.53BDL19.911.42BDLBDL0.0297.40
33-4B-1-001(A1)Grt30.0612.6635.380.5731.15BDL13.793.850.01BDLBDL97.46
33-4B-1-004(A2)Grt30.0612.0535.620.5229.88BDL15.804.52BDLBDL0.0298.46
33-4B-1-005(A3)Grt30.0512.0435.920.6031.21BDL14.823.700.02BDLBDL98.36
33-4B-1-007(A4)Grt30.0112.1035.310.6731.49BDL14.243.60BDLBDL0.0197.43
24a-1B-1-006(A6)Grt30.0610.2834.250.6030.51BDL17.653.81BDLBDL0.0497.20
24a-1B-1-007(A7)Grt30.0110.5933.940.3832.48BDL16.432.92BDLBDLBDL96.74

图5

新田岭石榴子石端元成分三元相图(底图据Meinert et al.,2005)注:Adr=Ca3Fe2Si3O12(钙铁榴石);Gro=Ca3Al2Si3O12(钙铝榴石);Sps=Mn3Al2Si3O12(锰铝榴石);Bly=Mn3Mn2Si3O12(锰榴石);Pyr=Mg3Al2Si3O12(镁铝榴石);Scr(Al)=Ca3Ti2SiAl2O12(铝钛榴石);图中浅红色区域代表世界范围内矽卡岩型钨矿床"

图6

新田岭矿床石榴子石的主量元素电子探针分析(以apfu计数)注:apfu为单位化学式中的原子数"

表3

新田岭矿床石榴子石微量元素LA-ICP-MS分析结果"

测试点位岩石类型元素
ScTiMnRbSrYNbMoLaCePrNdSm
24a-1B-2-A6Grt160.503 17325 700BDLBDL272.0049.5BDL0.090.400.243.098
25c-2B-1A3Grt1101.002 83335 6170.14BDL313.0032.7BDLBDL0.180.121.834.67
25c-2B-1A4Grt164.403 34653 1531.560.19418.0018.1BDLBDL0.070.101.333.77
25c-2B-1A6Grt172.403 90648 6421.593.08599.0021.3BDL0.070.200.131.745.64
33-4B-1-A5Grt196.404 61031 400BDLBDL547.0052.9BDLBDL0.150.051.214.02
24a-1B-1-A3Grt2-132.603 50626 100BDLBDL141.0021.9BDLBDL0.380.182.423.51
24a-1B-1-A4Grt2-125.602 41721 700BDLBDL101.0022.3BDLBDL0.400.193.315.08
24a-1B-1-A5Grt2-125.302 11549 400BDLBDL97.3018.8BDLBDL0.350.101.832.58
24a-1B-2-A2Grt2-152.202 68119 840BDL0.68198.0020.9BDLBDL0.610.354.755.59
24a-1B-2-A3Grt2-126.602 94228 600BDLBDL134.0017.8BDLBDL0.440.242.583.51
24a-1B-2-A4Grt2-127.202 70718 180BDLBDL78.3017.3BDLBDL0.300.242.362.9
24a-1B-2-A5Grt2-127.102 51127 800BDLBDL114.0018.2BDLBDL0.400.161.983.05
06b-1B-1-B4Grt2-21.3046215 7520.050.061.3819.5BDL0.061.630.696.134.09
06b-1B-1-B5Grt2-23.341 16216 2340.070.044.1712.8BDL0.051.100.677.635.9
06b-1B-1-B7Grt2-20.6852610 240BDL0.120.6020.80.520.112.701.008.344.01
06b-1B-2-B4Grt2-22.3362116 1490.060.071.9631.2BDL0.081.830.815.893.52
06b-1B-2-B5Grt2-25.0788917 449BDL0.072.1722.6BDL0.061.040.597.584.84
06b-1B-2-B6Grt2-23.681 26416 326BDL0.095.0317.4BDL0.051.200.537.185.87
06b-1B-2-B7Grt2-23.431 31714 629BDL0.204.8323.3BDL0.081.530.757.045.64
06b-1B-2-B8Grt2-21.4258411 7000.040.170.9717.1BDL0.052.110.857.733.84
06b-1B-2-B9Grt2-21.2756410 3880.120.121.3918.00.590.152.601.026.733.21
24a-1B-1-A6Grt328.802 78451 400BDLBDL151.0017.4BDLBDL0.220.131.191.68
24a-1B-1-A7Grt328.02 30330 3000.480.56115.0012.5BDLBDL0.240.192.044.39
33-4B-1-A1Grt334.33 24039 6000.310.17150.0020.6BDLBDL0.110.061.232.58
33-4B-1-A2Grt328.22 77947 600BDLBDL144.0015.0BDLBDLBDLBDL0.581.34
33-4B-1-A3Grt353.13 41741 7000.69BDL219.0023.7BDLBDLBDLBDLBDL1.26
33-4B-1-A4Grt350.13 55040 300BDLBDL187.0024.3BDLBDL0.07BDL0.631.02
测试点位岩石类型元素
EuGdTbDyHoErTmYbLuHfTaWTh
24a-1B-2-A6Grt11.6826.106.3444.809.5528.704.5933.205.217.8923.700.75BDL
25c-2B-1A3Grt11.5417.205.1642.9010.0036.506.2247.907.982.694.730.65BDL
25c-2B-1A4Grt11.0615.905.0553.3014.2051.908.8971.2011.402.814.681.16BDL
25c-2B-1A6Grt11.4923.907.8179.2021.8083.5014.90116.1018.103.135.111.47BDL
33-4B-1-A5Grt10.8018.306.4566.7019.9076.7014.50112.8019.306.1333.202.340.04
24a-1B-1-A3Grt2-11.268.482.3720.005.4817.602.8321.503.534.064.811.630.03
24a-1B-1-A4Grt2-11.6811.702.1716.603.5010.401.7412.602.063.242.271.250.04
24a-1B-1-A5Grt2-10.906.511.6713.703.6712.802.3618.102.903.272.811.250.04
24a-1B-2-A2Grt2-11.6013.903.1728.507.3927.404.7437.506.324.905.611.280.05
24a-1B-2-A3Grt2-11.447.832.1019.804.9417.703.0223.903.943.495.331.110.04
24a-1B-2-A4Grt2-11.377.581.5911.502.589.021.4111.101.814.193.161.23BDL
24a-1B-2-A5Grt2-10.957.601.9115.604.0516.102.9720.403.603.735.561.12BDL
06b-1B-1-B4Grt2-21.701.870.120.380.02BDLBDLBDLBDL0.123.160.740.23
06b-1B-1-B5Grt2-21.684.560.391.110.130.110.020.150.010.484.000.770.09
06b-1B-1-B7Grt2-21.661.900.080.320.02BDLBDLBDLBDL0.185.151.000.09
06b-1B-2-B4Grt2-21.431.800.140.560.030.070.010.07BDL0.144.211.060.15
06b-1B-2-B5Grt2-21.622.450.190.280.020.100.020.010.01BDL5.081.220.10
06b-1B-2-B6Grt2-21.745.050.441.230.060.11BDL0.08BDL0.395.070.970.08
06b-1B-2-B7Grt2-21.874.070.401.010.070.130.01BDLBDL0.618.560.970.08
06b-1B-2-B8Grt2-21.421.360.160.170.01BDLBDLBDLBDL0.123.790.480.10
06b-1B-2-B9Grt2-21.191.430.090.390.030.01BDL0.09BDL0.185.021.000.13
24a-1B-1-A6Grt30.585.891.8918.705.7523.704.4536.306.413.024.611.02BDL
24a-1B-1-A7Grt31.839.902.1416.703.8013.502.1616.402.532.381.771.34BDL
33-4B-1-A1Grt30.977.922.2820.705.1818.803.2225.204.253.063.811.20BDL
33-4B-1-A2Grt30.765.141.5418.404.8118.903.5028.004.782.582.500.81BDL
33-4B-1-A3Grt30.664.902.3023.907.3931.405.9752.409.464.187.411.05BDL
33-4B-1-A4Grt30.695.722.1122.006.5925.804.4940.207.053.505.321.24BDL

图7

新田岭矿床石榴子石微量元素LA-ICP-MS分析结果"

图8

新田岭矿床石榴子石球粒陨石标准化稀土模式图(球粒陨石数据源自Sun et al.,1989)"

表4

新田岭矿床石榴子石LA-ICP-MS U-Pb定年分析结果"

测试点位w(Pb)/(×10-6w(U)/(×10-6同位素比值同位素年龄/Ma
207Pb/235U1s/%206Pb/238U1s/%Rho206Pb/238U2s(abs)
06b-1B-01-A10.076.450.304016.20.025576.2-0.0516220
06b-1B-01-A20.147.440.334518.20.028144.1-0.0217915
06b-1B-01-A30.1610.230.385417.70.026805.60.1517019
06b-1B-01-A4BDL10.400.311619.60.024514.00.0415612
06b-1B-01-A50.3911.470.270322.30.025845.5-0.3616418
06b-1B-01-A60.4113.480.219523.00.023174.90.2114814
06b-1B-01-A70.6816.890.421316.60.024795.10.2815816
06b-1B-01-A81.9515.480.768212.90.025243.90.0516112
06b-1B-01-A90.214.990.323922.30.023835.70.0715217
06b-1B-01-A110.166.080.314919.50.027745.10.4417618
06b-1B-01-A120.317.000.380424.00.027647.5-0.0717526
06b-1B-01-A130.257.490.344925.30.026315.50.2016718
06b-1B-01-A140.138.390.264022.70.026645.00.1516917
06b-1B-01-A150.889.530.473921.30.028537.00.1718125
06b-1B-01-A160.518.750.497720.90.024764.30.3215813
06b-1B-01-A170.056.560.578116.80.026878.00.1417127
06b-1B-01-A180.075.960.285119.40.023325.3-0.0314816
06b-1B-01-A190.055.170.469224.30.024607.2-0.0815622
06b-1B-01-A200.115.230.322426.90.021666.90.2213819
06b-1B-01-A21BDL5.090.166447.60.026246.60.3716722
06b-1B-01-A220.194.150.724719.90.025817.50.0116424
06b-1B-01-A230.15.400.302336.50.026847.8-0.3517026
06b-1B-01-A240.145.210.398529.10.022357.2-0.3714220
06b-1B-01-A250.145.150.282124.00.025416.8-0.1216122
06b-1B-01-A270.213.670.890120.50.028928.20.3618330
06b-1B-01-A280.083.170.635522.50.027199.60.4717233
06b-1B-01-A290.113.050.226243.90.025728.30.0016327
06b-1B-01-A300.163.440.089090.30.027956.90.1117724
06b-1B-01-A310.126.370.175035.10.026085.3-0.1716617
06b-1B-01-A320.334.700.531119.50.021167.90.0013521
06b-1B-01-A330.033.860.198931.80.021486.00.1213716
06b-1B-01-A34BDL3.200.198545.80.020806.8-0.0513218
06b-1B-01-A35BDL3.540.242736.60.024467.4-0.2015523
06b-1B-01-A36BDL3.550.070495.20.023857.50.0115122
06b-1B-01-A370.063.840.189747.60.026228.3-0.1516627
06b-1B-01-A38BDL3.680.204542.00.026206.20.1716621
06b-1B-01-A39BDL3.860.239436.00.022808.30.0714524
06b-1B-01-A400.033.670.295830.30.021588.80.0413724

图9

新田岭矿床石榴子石U-Pb年龄T-W图解"

Antao S M, Klincker A M,2014.Crystal structure of a birefringent andradite-grossular from Crowsnest Pass,Alberta,Canada[J].Powder Diffraction,29(1):20-27.
Bai Daoyuan, Ma Tieqiu, Wang Xianhui,et al,2008.Progress in the study of mesozoic tectono-magmatism and mineralization in the central segment of the Nanling Mountains—Summary of major achievements of the 1∶250 000 geological survey in southeastern Hunan[J].Geology in China,53(3):436-455.
Bau M,1991.Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J].Chemical Geology,93(3/4):219-230.
Cai Minghai, Han Fengbin, He Longqing,et al,2008.He,Ar isotope characteristics and Rb-Sr dating of the Xintianling skarn scheelite deposit in Southern Hunan,China[J].Acta Geoscientica Sinica,29(2):167-173.
Carswell D A, Wilson R N, Zhai M,2000.Metamorphic evolution,mineral chemistry and thermobarometry of schists and orthogneisses hosting ultra-high pressure eclogites in the Dabieshan of central China[J].Lithos,52(1/2/3/4):121-155.
Deng X D, Li J W, Luo T,et al,2017.Dating magmatic and hydrothermal processes using andradite-rich garnet U-Pb geochronometry[J].Contributions to Mineralogy and Petrology,172(9):71.
Ding T, Ma D, Lu J,et al,2018.Garnet and scheelite as indicators of multi-stage tungsten mineralization in the Huangshaping deposit,southern Hunan Province,China[J].Ore Geology Reviews,94:193-211.
Dragovic B, Samanta L M, Baxter E F,et al,2012.Using garnet to constrain the duration and rate of water-releasing metamorphic reactions during subduction:An example from Sifnos,Greece[J].Chemical Geology,314/315/316/317:9-22.
Dziggel A, Wulff K, Kolb J,et al,2009.Significance of oscillatory and bell-shaped growth zoning in hydrothermal garnet:Evidence from the Navachab gold deposit,Namibia[J].Chemical Geology,262(3/4):262-276.
Fan X, Wang X, Lü X,et al,2019.Garnet composition as an indicator of skarn formation:LA-ICP-MS and EPMA studies on oscillatory zoned garnets from the Haobugao skarn deposit,Inner Mongolia,China[J].Geological Journal,54(4):1976-1992.
Fang Fang,2020.Prospecting significance of Xintianling tungsten deposit in Chenzhou City,Hunan Province[J].World Nonferrous Metals,(18):72-73.
Fei X, Zhang Z, Cheng Z,et al,2019.Factors controlling the crystal morphology and chemistry of garnet in skarn deposits:A case study from the Cuihongshan polymetallic deposit,Lesser Xing’an Range,NE China[J].American Mineralogist,104(10):1455-1468.
Feng Jiawei,2020.Study on the Relationship Between Magmatism of Qitianling Granitoid Batholith and Tin Mineralization in Southern Hunan[D].Chengdu:Chengdu University of Technology.
Gaspar M, Knaack C, Meinert L D,et al,2008.REE in skarn systems:A LA-ICP-MS study of garnets from the Crown Jewel gold deposit[J].Geochimica et Cosmochimica Acta,72(1):185-205.
Gevedon M, Seman S, Barnes J D,et al,2018.Unraveling histories of hydrothermal systems via U-Pb laser ablation dating of skarn garnet[J].Earth and Planetary Science Letters,498:237-246.
Haas J R,1995.Rare earth elements in hydrothermal systems:Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures[J].Geochimica et Cosmochimica Acta,59(21):4329-4350.
Hu Jiabin,2012.The Characteristic and Prospecting Significance of Tungsten-Bearing Granitoids of Xintianling Skarn Scheelite Deposit,Southern Hunan Province,Nanling Range[D].Nanjing:Nanjing University.
Hu Ruizhong, Mao Jingwen, Fan Weiming,et al,2010.Some scientific questions on the intra-continental metallogeny in the South China continent[J].Earth Science Frontiers,17(2):13-26.
Li H, Wu J H, Evans N J,et al,2018.Zircon geochronology and geochemistry of the Xianghualing A-type granitic rocks:Insights into multi-stage Sn-polymetallic mineralization in South China[J].Lithos,312/313:1-20.
Li X H, Li W X, Li Z X,et al,2009.Amalgamation between the Yangtze and Cathaysia Blocks in South China:Constraints from SHRIMP U-Pb zircon ages,geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J].Precambrian Research,174(1/2):117-128.
Lima S M, Corfu F, Neiva A M R,et al,2012.U-Pb ID-TIMS dating applied to U-rich inclusions in garnet[J].American Mineralogist,97(5/6):800-806.
Liu Yong, Li Tingdong, Xiao Qinghui,et al,2011.Qitianling granite magma mixing origin:The host rock and its microgranular dioritic enclaves of zircon U-Pb dating and Hf isotope evidence[J].Geological Science and Technology Information,30(2):19-27.
Mao Jingwen, Li Xiaofeng, Lehmann B,et al,2004. 40Ar-39Ar dating of tin ores and related granite in Furong tin orefield,Hunan Province,and its geodynamic significance[J].Mineral Deposits,23(2):164-175.
Meinert L D, Dipple G M, Nicolescu S,2005.World Skarn Deposits[M]//Economic Geology 100th Anniversary Volume.Littleton:Society of Economic Geologists.
Moretti R, Ottonello G,1998.An appraisal of endmember energy and mixing properties of rare earth garnets[J].Geochimica et Cosmochimica Acta,62(7):1147-1173.
Paton C, Hellstrom J, Paul B,et al,2011.Iolite:Freeware for the visualisation and processing of mass spectrometric data[J].Journal of Analytical Atomic Spectrometry,26(12):2508-2518.
Peng J, Zhou M F, Hu R,et al,2006.Precise molybdenite Re-Os and mica Ar-Ar dating of the Mesozoic Yaogangxian tungsten deposit,central Nanling district,South China[J]. Miner Deposita,41(7):661-669.
Zs Rak, Ewing R C, Becker U,2011.First-principles investigation of Ca3(Ti,Zr,Hf,Sn)2Fe2SiO12 garnet structure for incorporation of actinides[J].Physical Review B,83(15):155123.
Rubatto D, Hermann J,2007.Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks[J].Chemical Geology,241(1):38-61.
Shannon R D,1976.Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J].Acta Crystallographica Section A,32(5):751-767.
Shu Liangshu,2012.An analysis of principal features of tectonic evolution in South China block[J].Geological Bulletin of China,31(7):1035-1053.
Shu Liangshu, Zhou Xinmin, Deng Ping,et al,2006.Principal geological features of Nanling tectonic belt,South China[J].Geological Review,52(2):251-265.
Shuang Y, Liu D, Gong K,et al,2014.Zircon U‐Pb geochronology of the granite from Xintianling W deposit,Southern Hunan Province[J].Acta Geologica Sinica—English Edition,88(Supp.2):35-37.
Shuang Yan, Gong Yechao, Li Hang,et al,2016.Fluid-inclusion geochemistry of the lage-sized Xintianling tungsten deposit,Hunan Province,China[J].Geochimica,45(6):569-581.
Smith M P, Henderson P, Jeffries T E R,et al,2004.The rare earth elements and uranium in garnets from the Beinn an Dubhaich Aureole,Skye,Scotland,UK:Constraints on processes in a dynamic hydrothermal system[J].Journal of Petrology,45(3):457-484.
Sun S S, McDonough W F,1989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J].Geological Society,London,Special Publications,42(1):313-345.
Sun W D, Xu D R, Chi G X,et al,2017.Yanshanian(Late Mesozoic)ore deposit in China—An introduction to the special issue[J].Ore Geology Reviews,88:481-490.
Tian Z D, Leng C B, Zhang X C,et al,2019.Chemical composition,genesis and exploration implication of garnet from the Hongshan Cu-Mo skarn deposit,SW China[J].Ore Geology Reviews,112:103016.
van Westrenen W, Allan N L, Blundy J D,et al,2000.Atomistic simulation of trace element incorporation into Garnets—Comparison with experimental garnet-melt partitioning data[J].Geochimica et Cosmochimica Acta,64(9):1629-1639.
van Westrenen W, Allan N L, Blundy J D,et al,2003.Dopant incorporation into garnet solid solutions—A breakdown of Goldschmidt’s first rule[J].Chemical Communications,(6):786-787.
Vermeesch P,2021.Corrigendum to “IsoplotR:A free and open toolbox for geochronology” [Geosci.Front.9 (2018),1479-1493][J].Geoscience Frontiers,12(5):101227.
Wang F Y, Ling M X, Ding X,et al,2011.Mesozoic large magmatic events and mineralization in SE China:Oblique subduction of the Pacific plate[J].International Geology Review,53(5/6):704-726.
Wang Jingqiang,2017.Study of Key Issues Related to Tectonic Evolution of South China[D].Nanjing:Nanjing University.
Wang Y, Fan W, Zhang G,et al,2013.Phanerozoic tectonics of the South China block:Key observations and controversies[J].Gondwana Research,23(4):1273-1305.
Wei Ning,2019.Geological characteristics and prospecting indications of Xintianling scheelite deposit in Hunan Province[J].World Nonferrous Metals,(12):40-42.
Wood S A, Samson I M,2000.The hydrothermal geochemistry of tungsten in granitoid environments:I.Relative solubilities of ferberite and scheelite as a function of T,P,PH,and mNaCl[J].Economic Geology,95(1):143-182.
Wu Y, Tagen D, Menglong Z,2016.Oxygen fugacity studies and tectonic evolution of Xintianling granite in Hunan province China[J].International Journal of Earth Sciences and Engineering,9(1):142-149.
Xu Deru, Fu Gonggu, Xu Yiming,et al,2016.Research and Prospecting Exploration of Tin Polymetallic Deposits in the Qianlishan-Qitianling Region,South Hunan Province[M].Beijing:Science Press.
Yang J H, Peng J T, Hu R Z,et al,2013.Garnet geochemistry of tungsten-mineralized Xihuashan granites in South China[J].Lithos,177:79-90.
Yin Shunsheng, Wang Changlie,1994.Xingtianling scheelite deposit in Chenzhou County[J].Hunan Geology,13(4):205-211.
Yu Fan, Shu Qihai, Zeng Qingwen,et al,2020.Chemical composition of garnet from the Xintianling skarn W deposit in southern Hunan and its geological significance[J].Acta Pe-trologica Sinica,38(1):78-90.
Yuan Shunda, Zhang Dongliang, Shuang Yan,et al,2012.Re-Os dating of molybdenite from the Xintianling giant tungsten-molybdenum deposit in southern Hunan Province,China and its geological implications[J].Acta Petrologica Sinica,28(1):27-38.
Zhai D G, Liu J J, Zhang H Y,et al,2014.Origin of oscillatory zoned garnets from the Xieertala Fe-Zn skarn deposit,northern China:In situ LA-ICP-MS evidence[J].Lithos,190/191:279-291.
Zhang Guowei, Guo Anlin, Wang Yuejun,et al,2013.Tectonics of South China continent and its implications[J].Science China:Earth Sciences,43(10):1553-1582.
Zhang Hongfei, Gao Shan,2012.Geochemistry[M].Beijing:Geology Press.
Zhang Qi, Jin Weijun, Li Chengdong,et al,2009.Yanshanian large-scale magmatism and lithosphere thinning in Eastern China:Relation to large igneous province[J].Earth Science Frontiers,16(2):21-51.
Zhang R, Lu J, Wang R,et al,2014.Redox state of the granitic rocks and formation of the scheelite skarn in the Xintianling deposit,Nanling range,South China[J].Acta Geologica Sinica—English Edition,88(Supp.2):64-65.
Zhang R, Lu J, Zhu J,et al,2011.Re-Os and U-Pb geochronology of large Xintianling skarn-type scheelite deposit,Nanling Range,China[C]//11th SGA Biennial Meeting.Antofagasta:Society of Geology Applied to Mineral Deposits:Let’s Talk Ore Deposits.
Zhang Rongqing,2015.Petrogenesis and Metallogeny of the W-and Sn-bearing Granites in Southern Hunan Province:Case Study from Wangxianling and Xintianling[D].Nanjing:Nanjing University.
Zhang Y, Shao Y, Wu C,et al,2017.LA-ICP-MS trace element geochemistry of garnets:Constraints on hydrothermal fluid evolution and genesis of the Xinqiao Cu-S-Fe-Au Deposit,Eastern China[J].Ore Geology Reviews,86:426-439.
Zhang Yinping, Shao Yongjun, Xiong Yiqu,et al,2022.Metallogenic indication from geochemical characteristics of garnet in Gejiu Sn-Cu ore-concentrated area,Yunnan Province[J].Mineral Deposits,41(4):682-701.
Zhao Bin, Li Tongjin, Li Zhaoping,1983.Experimental study of physico-chemical conditions of the formation of skarns[J].Geochimica,12(3):256-267,331.
Zhao L, Guo F, Fan W,et al,2016.Early Cretaceous potassic volcanic rocks in the Jiangnan Orogenic Belt,East China:Crustal melting in response to subduction of the Pacific-Izanagi ridge?[J].Chemical Geology,437:30-43.
Zhao Panlao, Yuan Shunda, Yuan Yabin,2018.Geochemical characteristics of garnet in the Huangshaping polymetallic deposit,southern Hunan:Implications for the genesis of Cu and W-Sn mineralization[J].Acta Petrologica Sinica,34(9):2581-2597.
Zhu Jinchu, Wang Rucheng, Zhang Peihua,et al,2009.Zircon U-Pb geochronological framework of Qitianling granite batholith,middle part of Nanling Range,South China[J].Scientia Sinica (Terrae),39(8):1112-1127,1170-1180.
Zou S, Zou F, Ning J,et al,2018.A stand-alone Co mineral deposit in northeastern Hunan Province,South China:Its timing,origin of ore fluids and metal Co,and geodynamic setting[J].Ore Geology Reviews,92:42-60.
柏道远,马铁球,王先辉,等,2008.南岭中段中生代构造—岩浆活动与成矿作用研究进展[J].中国地质,35(3):436-455.
蔡明海,韩凤彬,何龙清,等,2008.湘南新田岭白钨矿床He,Ar同位素特征及Rb-Sr测年[J].地球学报,29(2):167-173.
方芳,2020.湖南省郴州市新田岭钨矿找矿意义[J].世界有色金属,(18):72-73.
冯佳伟,2020.湘南骑田岭花岗岩体岩浆作用与锡矿成矿作用关系研究[D].成都:成都理工大学.
胡加斌,2012.湘南新田岭含钨花岗岩特征及找矿意义[D].南京:南京大学.
胡瑞忠,毛景文,范蔚茗,等,2010.华南陆块陆内成矿作用的一些科学问题[J].地学前缘,17(2):13-26.
刘勇,李廷栋,肖庆辉,等,2011.骑田岭花岗岩体的岩浆混合成因:寄主岩及其暗色闪长质包体的锆石U-Pb年龄和Hf同位素证据[J].地质科技情报,30(2):19-27.
毛景文,李晓峰, Lehmann B,等,2004.湖南芙蓉锡矿床锡矿石和有关花岗岩的40Ar-39Ar年龄及其地球动力学意义[J].矿床地质,23(2):164-175.
舒良树,2012.华南构造演化的基本特征[J].地质通报,31(7):1035-1053.
舒良树,周新民,邓平,等,2006.南岭构造带的基本地质特征[J].地质论评,52(2):251-265.
双燕,龚业超,李航,等,2016.湘南新田岭大型钨矿流体包裹体地球化学特征[J].地球化学,45(6):569-581.
王静强,2017.华南构造演化有关的几个重要科学问题研究[D].南京:南京大学.
韦宁,2019.湖南新田岭矿区地质特佂及找矿标志[J].世界有色金属,(12):40-42.
许德如,符巩固,许以明,等,2016.湘南千里山-骑田岭地区锡多金属矿床研究与找矿勘查[M].北京:科学出版社.
殷顺生,王昌烈,1994.郴县新田岭钨矿床地质特征[J].湖南地质,13(4):205-211.
郁凡,舒启海,曾庆文,等,2022.湘南新田岭矽卡岩型钨矿床石榴子石成分特征及其地质意义[J].岩石学报,38(1):78-90.
袁顺达,张东亮,双燕,等,2012.湘南新田岭大型钨钼矿床辉钼矿Re-Os同位素测年及其地质意义[J].岩石学报,28(1):27-38.
张国伟,郭安林,王岳军,等,2013.中国华南大陆构造与问题[J].中国科学(地球科学),43(10):1553-1582.
张宏飞,高山,2012.地球化学[M].北京:地质出版社.
张旗,金惟俊,李承东,等,2009.中国东部燕山期大规模岩浆活动与岩石圈减薄:与大火成岩省的关系[J].地学前缘,16(2):21-51.
张银平,邵拥军,熊伊曲,等,2022.云南个旧锡铜矿集区石榴子石地球化学特征及成矿指示[J].矿床地质,41(4):682-701.
章荣清,2015.湘南含钨和含锡花岗岩成因及成矿作用[D].南京:南京大学.
赵斌,李统锦,李昭平,1983.夕卡岩形成的物理化学条件实验研究[J].地球化学,12(3):256-267,331.
赵盼捞,袁顺达,原垭斌,2018.湘南黄沙坪多金属矿床石榴子石地球化学特征及其对Cu与W-Sn复合成矿机理的指示[J].岩石学报,34(9):2581-2597.
朱金初,王汝成,张佩华,等,2009.南岭中段骑田岭花岗岩基的锆石U-Pb年代学格架[J].中国科学(D辑:地球科学),39(8):1112-1127,1170-1180.
[1] 张胜伟,邓腾,许德如,周岳强,董国军,李增华,马文,许可,海颜. 万古金矿中碳质物的成因及其与金成矿的关系[J]. 黄金科学技术, 2022, 30(6): 835-847.
[2] 赖玉彰,支学艺,舒荣华. 复合岩石单轴压缩力学与破坏特性试验研究[J]. 黄金科学技术, 2022, 30(5): 778-786.
[3] 万泰安,许德如,马文,张胜伟,王国建,卞玉冰,李博. 湘东北万古金矿床不同期次黄铁矿微量元素特征及其对金成矿机制的启示[J]. 黄金科学技术, 2022, 30(5): 676-690.
[4] 冼源宏,詹华思,李健唐. 广东怀集地区矽卡岩型铁多金属矿床同位素地球化学特征及其地质意义[J]. 黄金科学技术, 2021, 29(6): 805-816.
[5] 郭剑衡, 冷成彪, 张兴春, 张伟, 尹崇军, 张陆佳, 田振东. 滇西北烂泥塘斑岩铜金矿床铁氧化物LA-ICP-MS微量元素特征及其地质意义[J]. 黄金科学技术, 2019, 27(5): 659-677.
[6] 高云峰,杨兴科,阮仕琦,韩珂,张伟胜,朱伟. 南秦岭镇安西部钨矿集区控矿构造特征及找矿标志[J]. 黄金科学技术, 2019, 27(4): 489-496.
[7] 位鸥祥, 张达玉, 刘劲松, 陈雪锋, 叶龙翔, 蒋华, 钱祥, 周涛发. 江南古陆西北部塔下岩体年代学及成因研究[J]. 黄金科学技术, 2018, 26(6): 689-705.
[8] 宋均秋,谷建军,郎朋林. 内蒙古长岭子铅锌矿地质特征及矿床成因探讨[J]. 黄金科学技术, 2016, 24(4): 54-59.
[9] 吴兴泉,王治华,王梁,常春郊,丛润祥,张慧玉. 内蒙古朝不楞铁多金属矿床地质特征及找矿方向[J]. 黄金科学技术, 2014, 22(2): 31-37.
[10] 张志乾, 王建宁. 华铜矿金钼矿床地质特征及找矿方向[J]. J4, 2009, 17(2): 34-37.
[11] 林洪勇. 双鸭山七星河金矿矽卡岩中金矿化地质特征、成矿规律及矿床成因探讨[J]. J4, 2008, 16(3): 26-29.
[12] 许明亮, 杨建国, 李远昌. 宝清县团结山金铜矿床地质特征及成因探讨[J]. J4, 2006, 14(4): 19-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!