img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (1): 113-122.doi: 10.11872/j.issn.1005-2518.2023.01.154

• 采选技术与矿山管理 • 上一篇    下一篇

选冶联合回收某高硫黄金尾矿中金的试验研究

杨玮1,2,3(),叶金秋1,2,3(),龙涛1,2,3,邓莎1,2,3,王文涛1,2,3   

  1. 1.西安建筑科技大学资源工程学院,陕西 西安 710055
    2.陕西省黄金与资源重点实验室,陕西 西安 710055
    3.西安建筑科技大学绿色选冶协同技术与装备研究所,陕西 西安 710055
  • 收稿日期:2022-10-24 修回日期:2022-11-22 出版日期:2023-02-28 发布日期:2023-03-27
  • 通讯作者: 叶金秋 E-mail:ywmsco@126.com;yejinqiu@xauat.edu.cn
  • 作者简介:杨玮(1971-),男,河南灵宝人,教授,博士生导师,从事选矿、湿法冶金及资源综合利用研究工作。ywmsco@126.com
  • 基金资助:
    国家自然科学基金项目“碲化物型金矿中碲的浸出机理研究”(52174261);陕西省重点研发计划项目“选金尾矿资源高效回收低品位白钨矿及金的关键技术研究”(2020SF-362)

Experimental Study on Gold Recovery from a High-Sulfur Gold Tailings by Beneficiation-Metallurgy Combination

Wei YANG1,2,3(),Jinqiu YE1,2,3(),Tao LONG1,2,3,Sha DENG1,2,3,Wentao WANG1,2,3   

  1. 1.School of Resources Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, Shaanxi, China
    2.Key Laboratory of Gold and Resources in Shaanxi Province, Xi’an 710055, Shaanxi, China
    3.Technology & Equipment Institute of Green Beneficiation-Metallurgy, Xi’an University of Architecture and Technology, Xi’an 710055, Shaanxi, China
  • Received:2022-10-24 Revised:2022-11-22 Online:2023-02-28 Published:2023-03-27
  • Contact: Jinqiu YE E-mail:ywmsco@126.com;yejinqiu@xauat.edu.cn

摘要:

为实现选金尾矿资源中金的高效回收,对陕西省某含硫黄金尾矿(硫含量为11.60%、金含量为1.5×10-6、包裹金含量为84.77%)进行预处理—浮选预富集—浮选中矿再磨—浸出的选冶联合工艺研究。结果表明:机械搅拌、超声及添加H2SO4、Na2S预处理均可以改善金矿物表面性质,从而提高浮选回收率;原料添加H2SO4预处理后经2次粗选得到金品位为6.94×10-6、金回收率为87.22%的混合粗精矿产品,浮选回收率较无预处理时提高了10.52%,实现了裸露金和硫化物包裹金的预先富集;粗精矿经一次抑硫精选,获得金品位为21.65×10-6的金精矿;在-0.038 mm含量占95%、NaCN质量浓度为0.16%和浸出时间为48 h的条件下,精选中矿直接浸出率为91.48%,实现了包裹金的分离回收;最终得到金的选冶联合总回收率为80.45%,实现了高硫包裹型难处理金尾矿资源的高效回收。

关键词: 选冶联合, 黄金尾矿, 高硫金矿, 包裹金, 预处理, 抑硫精选

Abstract:

In order to realize the high-efficiency recovery of gold from gold tailings,an experimental study was carried out on gold tailings in Shaanxi Province.The chemical analysis shows that 11.60% S,1.5 g/t Au and 84.77% wrapped gold is contained in the raw material,which belongs to high-sulfur wrapped refractory gold ore.Due to the difficulty to separate gold from sulfur by a single flotation process,and obtaining qualified concentrate products,the combined process of pretreatment-flotation preconcentration-flotation middling regrinding-leaching was applied in the experimental research to improve the gold recovery.The results show that with mechanical agitation,ultrasonic,and pretreatment with H2SO4 and Na2S,the surface properties of gold minerals can be improved and the flotation recovery increase,among which H2SO4 is the best pretreatment.With 100×10-6 of sulfuric acid,110×10-6 of copper sulfate,80×10-6 of butane yellow,40×10-6 of butane black and 30×10-6 of 2 # oil,and after two roughing operations,the mixed coarse concentrate product with an gold grade of 6.94×10-6 and a recovery rate of 87.22% are obtained.The flotation recovery rate is 10.52% higher than that without pretreatment,realizing the preconcentration of bare gold and sulfide-coated gold.As the gold in the coarse concentrate is mostly in sulfide wrapped state,it is difficult to achieve full productization.Therefore,under the conditions that the amount of sodium silicate,sodium hexametaphosphate,and NaCN is 500×10-6,200×10-6,and 50×10-6 respectively,the sulfur suppression concentration process is adopted to obtain a gold concentrate with an gold grade of 21.65×10-6 and a part of qualified gold concentrate products are obtained.The beneficiated middlings was leached for 48 h under the conditions of -400 mesh gold concentrate,accounting for 95%,and NaCN concentration of 0.16%,the direct leaching rate is 91.48%,and the final combined recovery rate of gold is 80.45%,showing the realization of the efficient recovery of gold from the high sulfur wrapped refractory gold tailings resources.

Key words: beneficiation-metallurgy combination, gold tailings, high-sulfur gold ore, wrapped gold, pretreatment, sulfur suppression beneficiation

中图分类号: 

  • TD953

表1

黄金尾矿的化学成分"

成分含量成分含量
Au1.50CaO8.77
SiO235.51Al2O34.42
SO320.74S11.60
Fe2O316.67MgO1.29

表2

黄金尾矿中金的化学物相"

金物相含量分布率
合计1.50100.00
裸露及半裸露金0.2315.23
碳酸盐包裹金0.085.08
硅酸盐包裹金0.096.07
硫化物包裹金1.1073.62

图1

黄金尾矿选冶试验流程"

图2

预处理方式条件试验指标"

表3

H2SO4用量试验结果"

H2SO4用量

/(×10-6

产品名称产率/%

金品位

/(×10-6

金回收率/%
0粗精矿14.037.9164.54
粗选尾矿85.970.7135.46
原矿100.001.72100.00
60粗精矿16.927.2472.92
粗选尾矿83.080.5527.08
原矿100.001.68100.00
80粗精矿17.866.8474.04
粗选尾矿82.140.5225.96
原矿100.001.65100.00
100粗精矿18.616.4575.06
粗选尾矿81.390.4924.94
原矿100.001.60100.00
200粗精矿18.176.4573.40
粗选尾矿81.830.5226.60
原矿100.001.60100.00

表4

CuSO4用量试验结果"

CuSO4用量

/(×10-6

产品名称产率/%

金品位

/(×10-6

金回收率

/%

20粗精矿18.126.6074.50
粗选尾矿81.880.5025.50
原矿100.001.61100.00
50粗精矿18.616.4575.06
粗选尾矿81.390.4924.94
原矿100.001.60100.00
80粗精矿19.646.7275.98
粗选尾矿80.360.5224.02
原矿100.001.74100.00
110粗精矿20.246.7479.82
粗选尾矿79.760.4320.18
原矿100.001.71100.00
140粗精矿20.506.6878.96
粗选尾矿79.500.4621.04
原矿100.001.73100.00

表5

捕收剂用量试验结果"

捕收剂用量

/(×10-6

产品名称产率/%

金品位

/(×10-6

金回收率/%
30粗精矿17.896.4072.84
粗选尾矿82.110.5227.16
原矿100.001.57100.00
60粗精矿17.946.5276.04
粗选尾矿82.060.4523.96
原矿100.001.54100.00
90粗精矿20.246.7479.82
粗选尾矿79.760.4320.18
原矿100.001.71100.00
120粗精矿23.026.9487.22
粗选尾矿76.980.3012.78
原矿100.001.83100.00
150粗精矿24.006.5187.64
粗选尾矿76.000.2912.36
原矿100.001.78100.00

图3

粗精矿XRD分析结果"

表6

NaCN用量试验结果"

NaCN用量

/(×10-6

产品名称产率/%

金品位

/(×10-6

金回收率/%
10.00精矿16.506.1367.11
中矿6.534.4119.11
粗选尾矿76.970.2713.79
原矿100.001.70100.00
30.00精矿15.027.0266.29
中矿8.004.2021.12
粗选尾矿76.980.2612.58
原矿100.001.59100.00
50.00精矿1.6421.3921.26
中矿21.355.2267.54
粗选尾矿77.010.2411.20
原矿100.001.65100.00
70.00精矿0.1622.158.34
中矿22.195.7278.32
粗选尾矿77.200.2813.34
原矿100.001.62100.00
90.00精矿0.2830.004.71
中矿22.586.4082.51
粗选尾矿77.150.2912.78
原矿100.001.87100.00

图4

浸出细度条件试验结果"

图5

浸出剂浓度条件试验指标conditions"

图6

浸出时间条件试验结果"

表7

选冶联合综合条件试验结果"

产品名称产率/%金品位/(×10-6金回收率/%
原矿100.001.68100.00
粗选尾矿77.540.2813.22
金精矿1.6421.6521.62
浸渣20.820.506.34
浸液-3.2058.83
Cao Q, Cheng J, Feng Q,et al,2017.Surface cleaning and oxidative effects of ultrasonication on the flotation of oxidized pyrite[J].Powder Technology,311:390-397..
Cao Z, Wang P, Zhang W,et al,2020.Mechanism of sodium sulfide on flotation of cyanide-depressed pyrite[J].Transactions of Nonferrous Metals Society of China,30(2):484-491..
Chen Wenmei,1989.Classification of gold ore process types and prediction of its beneficiation and smelting effect[J].Gold,(9):2-6.
Chen Y F, Zhang X P, Shi Q,et al,2018.Investigation of the flotation performance of nickel sulphide by high intensity agitation pretreatment[J].Separation Science and Technology,57:2955-2959..
Cheng Wanli,2021.Study on Interaction Between Copper Sulfate and Butyl Xanthate During Pyrite Flotation[D].Guiyang:Guizhou University.
Ejtemaei M, Nguyen A V,2017.Characterisation of sphalerite and pyrite surfaces activated by copper sulphate[J].Minerals Engineering,100:223-232..
Feng Dawei, Wang Ling,2021.Experimental study on the treatment of low-grade gold bearing tailings by combined beneficiation and metallurgy[J].Gold Science and Technology,29(2):315-323.
Guo B, Peng Y, Espinosa-Gomez R,2014.Cyanide chemistry and its effect on mineral flotation[J].Minerals Engineering,66-68:25-32..
Guo B, Peng Y, Espinosa-Gomez R,2015.Effects of free cyanide and cuprous cyanide on the flotation of gold and silver bearing pyrite[J].Minerals Engineering,71:194-204..
Guo Biaohua, Lin Shuyong, Song Xuewen,et al,2017.Effect of sulfuric acid pretreatment on copper flotation of tailings and its mechanism analysis[J].Mining and Metallurgy,26(4):19-22.
Guo Caiyu,1981.Mechanism of sodium sulfide in flotation[J].Yunnan Metallurgy,(3):20-26.
Hu Yuehua,2014.Mineral Flotation[M].Changsha:Central Sou-th University Press.
Jiang Mao, Zhang Qin, Li Longjiang,2015.Study on the action mechanism of xanthate collectors and gold-loaded pyrite[J].Mining and Metallurgical Engineering,35(3):44-47.
Li H, Ma A, Srinivasakannan C,et al,2018.Investigation on the recovery of gold and silver from cyanide tailings using chlorination roasting process[J].Journal of Alloys and Compo-unds,763:241-249..
Liu Yanjie, Weng Xiaoqing,2015.Experimental study on enhancement effect of emulsification flocculation on flotation recovery of gold from gold tailings[J].Mining Research and Development,35(12):51-54.
Ma Hongzhou, Wang Dingding, Wang Yaoning,et al,2021.Research status of gold extraction from roasting cyanide tailings [J].Gold,42(2):68-71,75.
Ming Pingtian, Jiang Guangshan,2018.Present situation and research progress of independent rock gold mine in Qinghai Province[J].Gold Science and Technology,26(5):622-628.
Ministry of Industry and Information Technology of the People’s Republic of China,2011. Gold industry standard of the People’s Republic of China: [S].Beijing:China Standards Press.
Newell A J H, Bradshaw D J,Harris,P J,2006.The effect of heavy oxidation upon flotation and potential remedies for merensky type sulfides[J].Minerals Engineering,19(6/7/8):675-686..
O’Connor C T, Botha C, Walls M J,et al,1988.The role of copper sulphate in pyrite flotation[J].Minerals Engineering,1(3):203-212..
Ouyang Zhen, Chen Yifeng, Hu Yujie,et al,2019.Reduction and sulfur-fixing roasting and combination of beneficiation and metallurgy for extraction of gold-stibnite concentrate[J].Gold Science and Technology,27(3):449-457.
Qin H, Guo X, Tian Q,et al,2020.Pyrite enhanced chlorination roasting and its efficacy in gold and silver recovery from gold tailing[J].Separation and Purification Technology,250:117168..
Qiu T, Nie Q, He Y,et al,2019.Density functional theory study of cyanide adsorption on the sphalerite (110)surface[J].Applied Surface Science,465:678-685..
Song Qingshuang, Fu Yan,2012.Gold and Silver Extraction Metallurgy [M].Beijing:Metallurgical Industry Press.
Tian Runqing, Liu Yunhua, Tian Minmin,et al,2016.Mineral processing experiments on fine-disseminated gold ore from Shaanxi Province[J].Gold Science and Technology,24(6):102-106.
Wang Jiqing, Wang Ping, Zhao Xiaojuan,et al,2010.Research and application of comprehensive utilization of gold production tailings[J].Gold Science and Technology,18(5):87-89.
Yang B, Tong X, Lan Z,et al,2018.Influence of the interaction between sphalerite and pyrite on the copper activation of sphalerite[J].Minerals,8(1):16..
Yang Bo, Tong Xiong, Xie Xian,et al,2020.Study on the gold recovery from flotation tailings of refractory gold ores in Gansu Province by a process combining mineral processing and metallurgy[J].Gold Science and Technology,28(2):285-292.
Yang L, Li D, Zhu Z,et al,2019.Effect of the intensification of preconditioning on the separation of unburned carbon from coal fly ash[J].Fuel,242:174-183..
Yang X, Mu Y, Peng Y,2022.The roles of lead ions in restoring the floatability of pyrite depressed by free cyanide[J].Minerals Engineering,175:107289..
Yi Chengyu, Yang Yujie, Ren Xiangjun,2010.Experimental study on gold beneficiation from a gold tailings recycling [C]// 2010’Proceedings of China Mining Science and Te-chnology Conference.Beijing:China Metallurgical Mining Enterprises Association.
Zhang Jianwen, Qin Wenqing, Zhang Yansheng,et al,2009.Study on flotation test of a low-grade refractory copper oxide[J].Mining and Metallurgical Engineering,29(4):39-43.
Zhang N, Ejtemaei M, Nguyen A V,et al,2019.XPS Analysis of the surface chemistry of sulfuric acid-treated kaolinite and diaspore minerals with flotation reagents[J].Minerals Engineering,136:1-7..
Zhao C, Huang D, Chen J,et al,2016.The interaction of cyanide with pyrite,marcasite and pyrrhotite[J].Minerals Engineering,95:131-137..
Zhao Yingliang, Xing Jun, Sun Xiaogang,et al.2016.Research status and progress of gold tailings resource utilization [J].Nonferrous Metals(Mining Section),68(3):1-4,8.
Zhu Youyi, Mao Jufan,1990.Study on the dispersion of ultrafine rhodochrosite by dispersants such as sodium hexametaphosphate[J].Metal Mines,(12):51-54,63.
陈文美,1989.金矿石工艺类型划分及其选冶效果预测[J].黄金,(9):2-6.
程万里,2021.黄铁矿浮选过程中硫酸铜与丁基黄药的交互作用研究[D].贵阳:贵州大学.
冯大伟,王玲,2021.选冶联合处理低品位含金尾矿的试验研究[J].黄金科学技术,29(2):315-323.
郭彪华,林蜀勇,宋学文,等,2017.硫酸预处理对尾矿铜浮选的影响及其机理分析[J].矿冶,26(4):19-22.
郭才虞,1981.硫化钠在浮选中的作用机理[J].云南冶金,(3):20-26.
胡岳华,2014.矿物浮选[M].长沙:中南大学出版社.
姜毛,张覃,李龙江,2015.黄药类捕收剂与载金黄铁矿的作用机理研究[J].矿冶工程,35(3):44-47.
刘艳杰,翁孝卿,2015.乳化—絮凝作用对浮选回收金尾矿中金的强化效果试验研究[J].矿业研究与开发,35(12):51-54.
马红周,王丁丁,王耀宁,等,2021.焙烧氰化尾渣中金的提取研究现状[J].黄金,42(2):68-71,75.
明平田,蒋光山,2018.青海省独立型岩金矿选冶技术现状和研究进展[J].黄金科学技术,26(5):622-628.
欧阳臻,陈艺锋,胡宇杰,等,2019.金锑矿还原固硫焙烧—选冶联合提取研究[J].黄金科学技术,27(3):449-457.
宋庆双,符岩,2012.金银提取冶金[M].北京:冶金工业出版社.
田润青,刘云华,田民民,等,2016.陕西某微细粒浸染型金矿选矿试验研究[J].黄金科学技术,24(6):102-106.
王吉青,王苹,赵晓娟,等,2010.黄金生产尾矿综合利用的研究与应用[J].黄金科学技术,18(5):87-89.
杨波,童雄,谢贤,等,2020.选冶联合提高甘肃某难浸金矿浮选尾矿金回收率的试验研究[J].黄金科学技术,28(2):285-292.
衣成玉,杨玉洁,任向军,2010.某黄金尾矿再回收金选矿试验研究[C]//2010’中国矿业科技大会论文集.北京:中国冶金矿山企业协会.
张建文,覃文庆,张雁生,等,2009.某低品位难选氧化铜矿浮选试验研究[J].矿冶工程,29(4):39-43.
赵英良,邢军,孙晓刚,等,2016.黄金尾矿资源化利用研究现状与进展[J].有色金属(矿山部分),68(3):1-4,8.
中华人民共和国工业和信息化部,2011. 中华人民共和国黄金行业标准: [S].北京:中国标准出版社.
朱友益,毛钜凡,1990.六偏磷酸钠等分散剂对微细粒菱锰矿的分散作用研究[J].金属矿山,(12):51-54,63.
[1] 张辛未, 宋永辉, 董萍, 尹宁, 廖龙, 张盼盼. 碳质金矿中碳质物及其“劫金”机理研究进展[J]. 黄金科学技术, 2022, 30(2): 302-312.
[2] 高世雄,陈国宝,杨洪英,马鹏程. 含锑金矿预处理脱锑技术的研究进展[J]. 黄金科学技术, 2020, 28(6): 792-799.
[3] 杨波,童雄,谢贤,王晓. 选冶联合提高甘肃某难浸金矿浮选尾矿金回收率的试验研究[J]. 黄金科学技术, 2020, 28(2): 285-292.
[4] 欧阳臻,陈艺锋,胡宇杰,唐朝波,陈永明,叶龙刚. 金锑矿还原固硫焙烧—选冶联合提取研究[J]. 黄金科学技术, 2019, 27(3): 449-457.
[5] 赵文强,姜传进,石宝宝. 氰化尾渣选硫工艺优化研究[J]. 黄金科学技术, 2019, 27(1): 129-136.
[6] 刘子龙, 杨洪英, 张金刚, 宋言. 含砷金精矿砷富集试验研究[J]. 黄金科学技术, 2018, 26(2): 254-260.
[7] 李佳峰, 杨洪英, 佟琳琳, 金哲男, 张登超. 抛刀岭难处理金精矿细菌氧化-提金实验研究[J]. 黄金科学技术, 2018, 26(2): 248-253.
[8] 王浩,田庆华,辛云涛,郭学益. 含锑难处理金矿臭氧氧化预处理工艺研究[J]. 黄金科学技术, 2016, 24(4): 154-159.
[9] 丁文涛,蔡创开,郭金溢,许晓阳. 某难处理金矿热压氧化渣预处理试验研究[J]. 黄金科学技术, 2016, 24(1): 108-112.
[10] 唐立靖,唐云*,王燕南,杨典奇. 微细浸染型金矿碱预处理—非氰化浸出研究[J]. 黄金科学技术, 2015, 23(5): 94-98.
[11] 马英强,黄发兰,印万忠,洪正秀. 铜陵天马山含砷硫金精矿酸性氧化预处理试验研究[J]. 黄金科学技术, 2015, 23(3): 83-88.
[12] 唐立靖,唐云,许正波. 难选金矿微波预处理边磨边浸非氰化试验研究[J]. 黄金科学技术, 2015, 23(1): 85-89.
[13] 马玉天,陈大林,陈治毓,钟清慎,黄虎军,杜彦君. 高砷高硫难处理金精矿预处理工艺研究[J]. 黄金科学技术, 2014, 22(4): 103-107.
[14] 蔡创开. 黔西南某碳质含砷金矿提金工艺试验研究[J]. 黄金科学技术, 2014, 22(4): 124-128.
[15] 任洪胜,郎淳慧,邢洪波. 广西某难选金矿石选矿试验研究[J]. 黄金科学技术, 2014, 22(3): 65-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!