img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (5): 691-703.doi: 10.11872/j.issn.1005-2518.2022.05.030

• 采选技术与矿山管理 • 上一篇    下一篇

平面P波入射圆形夹塞动应力集中规律研究

陶明1,2(),姚靖1,2,李夕兵1,2   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.深部金属矿产开发与灾害控制湖南省重点实验室,湖南 长沙 410083
  • 收稿日期:2022-02-21 修回日期:2022-05-17 出版日期:2022-10-31 发布日期:2022-12-10
  • 作者简介:陶明(1982-),男,湖南长沙人,教授,博士生导师,从事岩石动力学方面的研究工作。mingtao@csu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目“动力扰动遇含夹塞体硐室散射引起的围岩动态应力集中与破裂规律”(12072376)

Dynamic Stress Concentration Laws of Cylindrical Inclusion Under Incident Plane P Waves

Ming TAO1,2(),Jing YAO1,2,Xibing LI1,2   

  1. 1.School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
    2.Hunan Key Laboratory of Resources Exploitation and Hazard Control for Deep Metal Mines, Changsha 410083, Hunan, China
  • Received:2022-02-21 Revised:2022-05-17 Online:2022-10-31 Published:2022-12-10

摘要:

在地下矿山的爆破开挖过程中,爆破地震波对夹塞周边围岩的稳定性具有重要的影响。为了研究平面P波作用下夹塞的动应力集中情况,以爆破地震波中的平面P波作为研究对象,利用波函数展开法以及Fourier积分得到了瞬态波入射夹塞的动应力集中因子的解析解。分析了围岩和夹塞的剪切弹性模量、泊松比及波数对动应力集中因子的影响。结果表明:低波数时瞬态波在夹塞周围产生更大的动应力集中因子。利用有限元软件LS-DYNA建立了波入射含夹塞岩体的数值模型,计算瞬态波在夹塞处的散射和应力集中,获得了夹塞周边的压力云图、有效应力云图以及破坏情况。研究结果验证了数值计算的正确性,并且得到破坏区域即为应力集中因子最大位置。

关键词: 应力波, 平面P波, 圆柱形夹塞, 瞬态P波散射, 动应力集中因子, 波数

Abstract:

The influences of blasting seismic waves on inclusion is crucial in the blasting excavation process. Part of the energy generated by blasting is used for the fragmentation of the rock mass,and the remaining part is propagated to a distance in the form of elastic waves.The scattering of stress waves at the structural discon-tinuity leads to the migration and accumulation of energy,resulting in local high energy and high stress,and then lead to rock failure.The plane P wave in the blasting seismic wave was taken as the research object and wave function expansion method was used to solve the scattering and dynamic stress concentration around the cylinder inclusion in the full plane under steady state linear elastic incident P wave.Under the cylindrical coor-dinate system,Bessel equation was obtained by separating variables from Helmholtz equation.Considering the simplicity of Bessel function in solving cylindrical boundary problem,the incident plane wave was expanded into the series of Bessel function,and the full wave function was obtained from the stress boundary condition of the cylindrical inclusion,then the response of the cylindrical inclusion subjected to the steady state linear elastic stationary incident P wave was obtained.Through the Fourier integral transformation of transient impact,the dynamic stress concentration of transient incident P wave around a cylindrical inclusion could be obtained.The effects of shear elastic modulus,Poisson’s ratio and wave number on the dynamic stress concentration factor were analyzed.The results show that the dynamic stress concentration factor reaches its maximum value when the wave number is 0.25,and the maximum value appears in the counterclockwise 90° and 270° directions of the inclusion.With the increase of wave number,tensile stress concentration occurs in the surrounding rock in the directions of 0° and 180°,which may lead to the failure of the surrounding rock. In addition,the finite element software LS-DYNA was used to establish a numerical model of wave incident rock mass with inclusions.The scattering and stress concentration of the transient wave at the inclusion were calculated,the pressure and effective stress chart around the inclusion and the rock mass failure were obtained.The distribution and numerical value of the stress concentration factor obtained by the simulation are very close to the numerical calculation,which proves the correctness of the numerical calculation.The results show that the larger the difference between the shear elastic modulus of the surrounding rock and the inclusion,the more obvious the dynamic stress concentration,and the larger the failure area of the surrounding rock is. The CSCM cap model material was used to establish a model,and the damage of surrounding rock under the action of transient wave incidence was obtained.The results show that the cracks appear in the counterclockwise 90° and 270° directions,that is,the position of the maximum value of the dynamic stress concentration factor.

Key words: stress wave, plane P wave, cylindrical inclusion, transient P wave scattering, dynamic stress concentration factor, wave number

中图分类号: 

  • TD313

图1

几何模型"

图2

介质与夹塞物理性质相同情况下夹塞周边应力图"

图3

泊松比为v1=0.25、v2=0.20时环向动应力集中因子与波数的关系"

图4

不同波数时圆夹塞周边DSCF分布"

图5

不同泊松比组合情况下夹塞周边DSCF分布"

图6

主频为60π雷克子波波形图"

图7

雷克子波造成的环向DSCF"

图8

不同时刻圆夹塞周边瞬态环向DSCF分布"

图9

雷克子波造成的径向DSCF"

图10

不同时刻圆夹塞周边瞬态径向DSCF分布"

图11

数值模拟模型图"

图12

压力和有效应力云图"

图13

圆夹塞周边DSCF分布的数值模拟和理论计算结果"

图14

圆形夹塞周边破坏情况"

图15

瞬态波入射时泊松比对DSCF的影响"

图16

剪切弹模之比对瞬态DSCF的影响"

图17

DSCF的最大值和最小值随波数kD变化点线图"

Chen Tao, Hu Chao, Huang Wenhu,2006.Dynamic stress concentrations in a plate with cylindrical cavity by incident P wave [J].Earthquake Engineering and Engineering Dynamics,26(4):32-36.
Chen Zhigang,2005.Scattering of SH-wave by a shallow buried elliptic cylindrical cavity and dynamic stress concentration [J].Journal of Jinan University(Natural Science),(3):324-330.
Cui Z, Sheng Q, Leng X L,et al,2016.Control effect of a large geological discontinuity on the seismic response and stability of underground rock caverns:A case study of the Baihetan #1 surge chamber [J].Rock Mechanics and Engineering,49(6):2099-2114.
Ghafarollahi A, Shodja H M,2018.Scattering of SH-waves by an elliptic cavity/crack beneath the interface between functionally graded and homogeneous half-spaces via multipole expansion method[J].Journal of Sound and Vibration,435:372-389.
Li Z, Tao M, Du K,et al,2020. Dynamic stress state around shallow-buried cavity under transient P wave loads in different conditions[J].Tunnelling and Underground Space Technology,97:1-12.
Liu Diankui, Tian Jiayong,1999.Scattering and dynamic stress concentration of SH-wave by interface cylindrical elastic inclusion [J].Explosion and Shock Waves,(2):20-28.
Liu Zhongxian, Liang Jianwen, Li Fan,2012.Diffraction of plane SV waves by an inclusion in saturated poroelastic half-space [J].Chinese Quarterly of Mechanics,33(2):256-268.
Lu Shiwei, Sun Jinshan, Liu Hongyu,et al,2021.Study on dynamic stress concentration of a pipeline under the cylindrical SH-waves [J].Engineering Blasting,27(4):34-39.
Xiaotang Lü, Yang Zailin, Liu Diankui,2009.Antiplane reponse of multiple semi-cylindrical hills above a subsurface elastic cylindrical inclusion to incident SH waves[J].World Earthquake Engineering,25(2):114-119.
Nobes D C,2016. Ground penetrating radar response from voids: A demonstration using a simple model[C]//16th International Conference on Ground Penetrating Radar (GPR).Hongkong:IEEE. DOI:10.1109/ICGPR.2016.7572511 .
doi: 10.1109/ICGPR.2016.7572511
Pao Y H, Mow C C, Achenbach J D,1973.Diffraction of elastic waves and dynamic stress concentrations[J].Journal of Applied Mechanics,40(4):213-219.
Ricker N H,1940. The form and nature of seismic waves and the structure of seismograms[J]. Geophysics,5(4):348-366.
Tao M, Zhao R, Du K,et al,2020a.Dynamic stress concentration and failure characteristics around elliptical cavity subjected to impact loading[J].International Journal of Solids and Structures,191/192:401-417. .
Tao M, Zhao H T, Li Z,et al,2020b.Analytical and numerical study of a circular cavity subjected to plane and cylindrical P-wave scattering [J].Tunnelling and Underground Space Technology,95:103143. .
Wang Z Z, Gao B, Jiang Y J,et al,2009.Investigation and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake[J].Science in China (Series E:Technological Sciences),52(2):546-558.
Yang Zailin, Yan Peilei, Liu Diankui,2009.Scattering of SH-waves and ground motion by an elastic cylindrical inclusion and a crack in half space [J].Chinese Journal of Theoretical and Applied Mechanics,41(2):229-235.
You Hongbing, Zhao Fengxin, Li Fangjie,2009.Scattering of P waves by a local nonhomogeneous body in a layered half-space [J].Rock and Soil Mechanics,30(10):3133-3138.
Yuan Xiaoming,1996.The influence of the scattering from the plane of the circular inclusion under the ground surface on the ground motion [J].Chinese Journal of Geophysics,39(3):373-381.
Zhang Yingying, Wang Yunzhuan, Shi Ying,et al,2017.Frequencies of the Ricker wavelet [J].Progress in Geophysics,32(5):2162-2167.
Zhao Chunxiang, Qi Hui,2016.Dynamic effect of SH wave on interface circular cavity in half space[J].Journal of Vibration and Shock,35(12):132-135.
陈涛,胡超,黄文虎,2006. P波入射时含圆柱形空腔板弹性波散射与动应力集中 [J].地震工程与工程振动,26(4):32-36.
陈志刚,2005.平面SH波在浅埋椭圆柱形孔洞上的散射与动应力集中 [J].暨南大学学报,(3):324-330.
刘殿魁,田家勇,1999.SH波对界面圆柱形弹性夹杂散射及动应力集中[J].爆炸与冲击,(2):20-28.
刘中宪,梁建文,李帆,2012.流体饱和半空间中夹塞物对平面SV波的散射[J].力学季刊,33(2):256-268.
路世伟,孙金山,刘洪宇,等,2021.柱面SH波作用下管道的动应力集中研究 [J].工程爆破,27(4):34-39.
吕晓棠,杨在林,刘殿魁,2009.SH波对浅埋圆柱形弹性夹杂附近多个半圆形凸起的散射[J].世界地震工程,25(2):114-119.
杨在林,闫培雷,刘殿魁,2009.SH波对浅埋弹性圆柱及裂纹的散射与地震动[J].力学学报,41(2):229-235.
尤红兵,赵凤新,李方杰,2009. 层状场地中局部不均体对平面P波的散射[J]. 岩土力学,30(10):3133-3138.
袁晓铭,1996.地表下圆形夹塞区出平面散射对地面运动的影响[J].地球物理学报,39(3):373-381.
张莹莹,王云专,石颖,等,2017.雷克子波频率研究 [J].地球物理学进展,32(5):2162-2167.
赵春香,齐辉,2016.SH波对半空间界面圆孔的动力效应[J].振动与冲击,35(12):132-135.
[1] 王卫华,罗杰,刘田,韩震宇. 节理粗糙度对应力波传播及试样破坏影响的颗粒流模拟[J]. 黄金科学技术, 2021, 29(2): 208-217.
[2] 汪海旭, 宗琦, 汪海波, 王梦想. 煤矿下山巷道水与空气不耦合装药爆破技术对比研究[J]. 黄金科学技术, 2019, 27(5): 747-754.
[3] 汪海波, 魏国力, 宗琦, 徐颖. 节理发育岩体巷道掘进爆破数值模拟与应用研究[J]. 黄金科学技术, 2018, 26(3): 342-348.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 闫杰, 覃泽礼, 谢文兵, 蔡邦永. 青海南戈滩—乌龙滩地区多金属地质特征与找矿潜力[J]. J4, 2010, 18(4): 22 -26 .
[2] 宋贺民, 冯喜利, 丁宪华. 太行山北段交界口矿区地质地球化学特征及找矿方向[J]. J4, 2010, 18(3): 54 -58 .
[3] 李淑芳, 于永安, 朝银银, 王美娟, 张岱, 刘君, 孙亮亮. 在辽东成矿带找寻层控型金矿床靶区[J]. J4, 2010, 18(3): 59 -62 .
[4] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[5] 陈学俊. 青海直亥买休玛金矿床矿体特征与找矿前景分析[J]. J4, 2010, 18(4): 50 -53 .
[6] 杨明荣, 牟长贤. 原子荧光法测定化探样品中砷和锑的不确定度评定[J]. J4, 2010, 18(3): 68 -71 .
[7] 苏建华, 陆树林. 从高酸低浓度尾液中萃取金的试验[J]. J4, 2010, 18(3): 72 -75 .
[8] 王大平, 宋丙剑, 韦库明. 大功率激电测量在辽宁北水泉寻找隐伏矿床的应用[J]. J4, 2010, 18(3): 76 -78 .
[9] 黄俊,吴家富,鲁如魁 ,夏立元. 内蒙古兵图金矿成因探讨及找矿方向[J]. J4, 2010, 18(4): 1 -5 .
[10] 张渊, 张洪喜. 山东黄埠岭金矿7号脉地质特征及控矿机理研究[J]. J4, 2010, 18(4): 12 -16 .