img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (4): 574-584.doi: 10.11872/j.issn.1005-2518.2022.04.183

• 采选技术与矿山管理 • 上一篇    

磷石膏胶结充填体动态力学特性研究

刘业繁(),石英   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2021-11-29 修回日期:2022-05-05 出版日期:2022-08-31 发布日期:2022-10-31
  • 作者简介:刘业繁(1998-),女,河南驻马店人,硕士研究生,从事矿山充填研究工作。1069027521@qq.com
  • 基金资助:
    国家自然科学基金项目“骨料磷石膏对胶结充填体材料性能影响及改性研究”(42177160)

Study on Dynamic Mechanical Characteristics of Phosphogypsum Cemented Filling Body

Yefan LIU(),Ying SHI   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2021-11-29 Revised:2022-05-05 Online:2022-08-31 Published:2022-10-31

摘要:

为了研究凿岩爆破对不同磷石膏新型砂浆配比和不同养护时间的磷石膏胶结充填体稳定性的影响,利用Hopkinson压杆实验装置,以不同加载速度轴向冲击充填体试样,对其动态力学性能进行了研究,分析了动态冲击下充填体的波形曲线、应力—应变曲线,动态抗压强度、强度增强因子(DIF)与平均应变率的关系。结果表明:磷石膏胶结充填体的波阻抗较小,能够对应力波产生阻尼作用;在相同配比和相同养护时间下,不同应变率的充填体应力—应变曲线的下降段基本一致,而上升段差异较为明显;随着应变率的提高,上升段曲线随之平缓;动态抗压强度和DIF均随着平均应变率的增加而增加,且均能用多项式函数分别来描述动态抗压强度、DIF与平均应变率之间的关系。

关键词: 磷石膏胶结充填体, 霍普金森杆, 应变率效应, 动态抗压强度, 力学特性, 强度增强因子

Abstract:

In order to study the influence of rock drilling and blasting on the stability of phosphogypsum cemented filling body with different phosphogypsum-to-the new mortar ratios and different curing times,the dynamic mechanical properties of the phosphogypsum cemented filling body were studied.By using the Hopkinson pressure bar(SHPB) experimental device to axially impact filling body at different loading speeds,the waveform curves,stress-strain curves,dynamic compressive strength,dynamic increase factor(DIF),the failure modes,and the relationship between the average strain rate of the filling body and the ratio of the filling materials were analyzed.The results show that the wave impedance of the phosphogypsum cemented filling body is small and can dampen the stress wave.Under the conditions of the same ratio,same curing and different strain rates,the descending section of the stress-strain curve of the filling body is basically the same,while the difference in the ascending section is more obvious.For the group with the highest static compressive strength,the growth rate of stress increases rapidly with the increase of strain,while the dynamic compressive strength and DIF both increase with the increase of the average strain rate,and the relationship between the dynamic compressive strength,DIF and average strain rates can be described by polynomial functions.When the curing time is the same,with the increase of the new phosphogypsum mortar ratio,the dynamic compressive strength and DIF of the filling body decrease,and relationship between the dynamic compressive strength of the filling body,DIF and the new phosphogypsum mortar ratio presents a polynomial function.When the proportion of new phosphogypsum mortar is the same,with the increase of curing time,the dynamic compressive strength and DIF of the filling body increase,and the dynamic compressive strength and DIF of the filling body have a polynomial function relationship with the curing time.When the average strain rate is less than 100 s-1,the fractured shape of the fillings is blocky,and when the average strain rate reaches 300 s-1,the fractured shape of the filling body is already powdery,indicating that the critical value of the average strain of the phosphogypsum cemented filling body is between 100 s-1 and 300 s-1.When the proportion of new phosphogypsum mortar is the same,the longer the curing time is,the lower the pulverization degree of the filling body is.When the curing time is the same,the larger the proportion of new phosphogypsum mortar,the higher the pulverization degree of the filling body.

Key words: phosphogypsum cemented filling body, Hopkinson pressure bar, strain rate effect, dynamic compressive strength, mechanical properties, dynamic increase factor

中图分类号: 

  • X936

表1

磷石膏样品粒径分布测定结果"

粒径分布参数数值
D10/μm18.10
D30/μm35.30
D60/μm69.20
Cu=D60/D103.82
Cc=D302/(D60*D100.99

图1

磷石膏粒径分布曲线"

图2

模具及凝固中的充填体试块"

图3

静载条件下磷石膏胶结充填体试块L1-1-30(28 d)单轴抗压强度应力—应变曲线(28 days) under static load conditions"

图4

SHPB压缩试验原理示意图"

图5

SHPB试验装置典型波形图"

图6

不同条件下充填体的动态应力—应变曲线"

图7

动载条件下磷石膏胶结充填体试块L1-2-16(28 d)抗压强度应力—应变曲线"

图8

相同养护时间下不同新型砂浆占比对动态抗压强度的影响"

图9

相同新型砂浆占比下不同养护时间对动态抗压强度的影响"

表2

平均应变率和动态抗压强度的拟合相关系数"

养护时间/d拟合类型R2平均值
1∶43∶72∶3
14线性0.930.900.900.91
多项式0.930.900.930.92
指数0.910.870.870.88
28线性0.980.930.920.94
多项式0.980.940.970.96
指数0.930.900.840.89

图10

相同养护时间下不同新型砂浆占比对DIF的影响"

表3

平均应变率和DIF的拟合相关系数"

养护时间/d拟合类型R2

R2

平均值

1∶43∶72∶3
14线性0.890.880.830.87
多项式0.890.890.930.90
指数0.870.830.800.83
对数0.820.880.910.87
28线性0.970.900.910.93
多项式0.970.900.920.93
指数0.950.890.890.91
对数0.920.870.930.91

图11

充填体试块比能量吸收量和平均应变率的关系"

表4

平均应变率和比能量吸收量的拟合相关系数"

拟合类型R2R2平均值
1∶43∶72∶3
线性0.960.950.990.97
多项式0.970.971.000.98
指数0.710.950.880.85
对数0.960.880.970.94

图12

不同应变率下不同灰砂比的磷石膏充填体试块的破坏模式(养护14 d)"

图13

不同养护时间和不同应变率下灰砂比为3∶7时磷石膏充填体试块的破坏模式"

Cao S, Yilmaz E, Song W,2018.Dynamic response of cement-tailings matrix composites under SHPB compression load[J].Construction and Building Materials,186(20):892-903.
Fall M, Celestin J C, Pokharel M,et al,2010.A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill[J].Engineering Geology,114(3/4):397-413.
Gao Y, Xu J Y, Bai E L,et al,2015.Static and dynamic mechanical properties of high early strength alkali activated slag concrete[J].Ceramics International,41(10):12901-12909.
Gong Fengqiang, Wang Jin, Li Xibing,2018.The rate effect of compression characteristics and a unified model of dynamic increasing factor for rock materials[J].Chinese Journal of Rock Mechanics and Engineering,37(7):1586-1595.
Li D Y, Han Z Y, Sun X L,et al,2019a.Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests[J].Rock Mechanics and Rock Engineering,52:1623-1643.
Li X B, Lok T S, Zhao J,et al,2000.Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress-strain curves for rocks[J].International Journal of Rock Mechanics and Mining Sciences,37(7):1055-1060.
Li X B, Zhou S T, Zhou Y N,et al,2019b.Durability evaluation of phosphogypsum-based cemented backfill through drying-wetting cycles[J].Minerals,9(5):321.
Li X B, Zhou Y N, Zhu Q Q,et al,2019c.Slurry preparation effects on the cemented phosphogypsum backfill through an orthogonal experiment[J].Minerals,9(1):31.
Li Xibing, Gong Fengqiang, Gao Ke,et al,2010.Test study of impact failure of rock subjected to onedimensional coupled static and dynamic loads[J].Chinese Journal of Rock Mechanics and Engineering,29(2):251-260.
Li Xibing, Gu Desheng, Lai Haihui,1993.On the reasonable loading stress vaveforms determined by dynamic stress-strain curves of rocks by SHPB[J].Explosion and Shock Waves,13(2):125-130.
Li Xibing, Gu Desheng,1994.Rock Impact Dynamics[M].Changsha:Central South University of Technology Publishing House.
Liu G J, Bai E L, Xu J Y,et al,2020.Dynamic compressive mechanical properties of carbon fiber-reinforced polymer concrete with different polymer-cement ratios at high strain rates[J].Construction and Building Materials,261(7):119995.
Liu Junzhong, Xu Jinyu, Xiaocong Lü,et al,2009.Experimental study on dynamic mechanical properties of amphibolites under impact compressive loading[J].Chinese Journal of Rock Mechanics and Engineering,28(10):2113-2120.
Min C D, Li X B, He S Y,et al,2019.Effect of mixing time on the properties of phosphogypsum-based cemented backfill[J].Construction and Building Materials,210:564-573.
Min C D, Shi Y, Liu Z X,2021.Properties of cemented phosphogypsum(PG) backfill in case of partially substitution of composite Portland cement by ground granulated blast furnace slag[J].Construction and Building Materials,305(4):124786.
Shan R L, Jiang Y S, Li B Q,2000.Obtaining dynamic complete stress-strain curves for rock using the Split Hopkinson Pressure Bar technique[J].International Journal of Rock Mechanics and Mining Sciences,37(6):983-992.
Tan Y Y, Yu X, Elmo D,et al,2019.Experimental study on dynamic mechanical property of cemented tailings backfill under SHPB impact loading[J].International Journal of Minerals Metallurgy and Materials,26(4):404-416.
Wang Changqing, Xiao Jianzhuang, Sun Zhenping,2016.Influence of strain rate effect on mechanical behavior of recycled aggregate concrete[J].Journal of Tongji University(Nature Science),44(8):1173-1181.
Wang Shi, Zhang Qinli, Wang Xinmin,2014.Application of SD in stability prediction of filling system in Jinchuan Longshou mine[J].China Safety Science Journal,24(9):159-165.
Xie H P, Zhu J B, Zhou T,et al,2020.Conceptualization and preliminary study of engineering disturbed rock dynamics[J].Geomechanics and Geophysics for Geo-Energy and Geo-Resources,6(2):34.
Yang Wei, Zhang Qinli, Yang Shan,et al,2017.Mechanical property of high concentration total tailing cemented backfilling under dynamic loading[J].Journal of Central South University(Science and Technology),48(1):156-161.
Zhang Qinli, Yang Wei, Yang Shan,et al,2015.Test research on stability of high density total tailing cemented backfilling under dynamic loading[J].China Safety Science Journal,25(3):78-82.
Zhou S T, Li X B, Zhou Y N,et al,2020.Effect of phosphorus on the properties of phosphogypsum-based cemented backfill[J].Journal of Hazardous Materials,399:122993.
Zhou Y X, Xia K, Li X B,et al,2012.Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials[J].International Journal of Rock Mechanics and Mining Sciences,49:105-112.
宫凤强,王进,李夕兵,2018.岩石压缩特性的率效应与动态增强因子统一模型[J].岩石力学与工程学报,37(7):1586-1595.
李夕兵,宫凤强,高科,等,2010.一维动静组合加载下岩石冲击破坏试验研究[J].岩石力学与工程学报,29(2):251-260.
李夕兵,古德生,赖海辉,1993.冲击载荷下岩石动态应力—应变全图测试中的合理加载波形[J].爆炸与冲击,13(2):125-130.
李夕兵,古德生,1994.岩石冲击动力学[M].长沙:中南工业大学出版社.
刘军忠,许金余,吕晓聪,等,2009.冲击压缩荷载下角闪岩的动态力学性能试验研究[J].岩石力学与工程学报,28(10):2113-2120.
王长青,肖建庄,孙振平,2016.应变率效应对再生混凝土动态力学性能的影响[J].同济大学学报(自然科学版),44(8):1173-1181.
王石,张钦礼,王新民,2014.SD在金川龙首矿充填系统稳定性预测中的应用[J].中国安全科学学报,24(9):159-165.
杨伟,张钦礼,杨珊,等,2017.动载下高浓度全尾砂胶结充填体的力学特性[J].中南大学学报(自然科学版),48(1):156-161.
张钦礼,杨伟,杨珊,等,2015.动载下高密度全尾砂胶结充填体稳定性试验研究[J].中国安全科学学报,25(3):78-82.
[1] 周盛全, 王瑞, 田诺成, 李栋伟. 冲击荷载作用下热处理花岗岩动态力学特性研究[J]. 黄金科学技术, 2022, 30(2): 222-232.
[2] 李柏锦,李响,王彦,尹土兵,李夕兵. 温度冲击对花岗岩动态拉伸力学性能的影响[J]. 黄金科学技术, 2021, 29(4): 545-554.
[3] 邓红卫,田广林. 基于CiteSpace可视化分析下2013~2020年冻融岩石力学热点研究探析[J]. 黄金科学技术, 2021, 29(2): 275-286.
[4] 戴兵, 单启伟, 罗鑫尧, 薛永明. 含孔洞岩石在静应力下的循环冲击试验研究[J]. 黄金科学技术, 2020, 28(4): 531-540.
[5] 曹世荣,韩建文,肖伟晶,卓毓龙,王晓军,冯萧. 不同骨料含量胶结充填体的应力—应变关系研究[J]. 黄金科学技术, 2017, 25(1): 93-98.
[6] 赵国彦,侯俊,张小瑞,李地元,王涛. 磷石膏膏体充填体力学特性研究[J]. 黄金科学技术, 2016, 24(5): 7-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!