img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (4): 540-549.doi: 10.11872/j.issn.1005-2518.2022.04.026

• 采选技术与矿山管理 • 上一篇    

单轴压缩下不同尺寸充填体能量损伤演化特征试验研究

赵奎1,2(),刘周超1,2,曾鹏1,2(),龚囱1,2   

  1. 1.江西理工大学资源与环境工程学院,江西 赣州 341000
    2.江西理工大学江西省矿业工程重点实验室,江西 赣州 341000
  • 收稿日期:2022-02-16 修回日期:2022-04-13 出版日期:2022-08-31 发布日期:2022-10-31
  • 通讯作者: 曾鹏 E-mail:yglmf_zk@163.com;zengpeng23@126.com
  • 作者简介:赵奎(1969-),男,安徽六安人,教授,从事矿山岩石力学测试与工程研究工作。yglmf_zk@163.com
  • 基金资助:
    国家自然科学基金项目“硬脆性岩石特征应力损伤演化机制及其与Kaiser效应的关系研究”(52164004);“浸矿侵蚀下离子型稀土矿床基岩结构面剪切强度劣化时效特性及机理”(52104086);江西省重点研发计划重点项目“矿山地下开采灾害预警、应急救援关键技术与示范”(20212BBG71009);江西省博士后科研项目“赣南钨矿深部充填尾砂胶结充填体破坏的次声波预测方法及其机理探索性研究”(2020KY39)

Experimental Study on Energy Damage Evolution Characteristics of Filling Specimens with Different Sizes Under Uniaxial Compression

Kui ZHAO1,2(),Zhouchao LIU1,2,Peng ZENG1,2(),Cong GONG1,2   

  1. 1.School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
    2.Key Laboratory of Mining Engineering of Jiangxi Province, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
  • Received:2022-02-16 Revised:2022-04-13 Online:2022-08-31 Published:2022-10-31
  • Contact: Peng ZENG E-mail:yglmf_zk@163.com;zengpeng23@126.com

摘要:

对4种不同尺寸(40,70.7,100,150 mm)的充填体试件进行了室内单轴压缩试验,研究了尺寸变化对充填体能量演化规律和损伤破坏机制的影响,并得到了基于弹性能耗比的充填体破坏前兆判据。研究结果表明:单轴压缩下不同尺寸充填体的能量演化规律相似,体现为峰前以弹性应变能积蓄为主,峰后耗散能占比不断上升并迅速超越弹性应变能;随着试件尺寸的增加,充填体在峰值应力处总输入应变能、弹性应变能和耗散能均呈非线性下降趋势;根据耗散能曲线,可将充填体能量损伤演化过程划分为初始损伤、损伤加速、损伤稳定发展和损伤破坏4个阶段;试件尺寸越大,弹性能耗比K值变化幅度越大;弹性能耗比K值曲线整体先上升后下降,持续到一个较低值,在临近峰值应力处再转为上升。弹性能耗比K值曲线的这一变化规律可作为充填体临界破坏前兆特征。

关键词: 尺寸效应, 充填体, 能量损伤, 弹性能耗比, 破坏前兆

Abstract:

The indoor uniaxial compression tests were carried out on four filling specimens with different sizes of 40 mm,70.7 mm,100 mm and 150 mm.The effects of size changes on the energy evolution law and damage mechanism of filling were studied,and the precursory criterion of filling body failure based on elastic energy consumption ratio was obtained.The results show that the energy evolution laws of different sizes of fillings under uniaxial compression are similar,which are reflected in that the elastic strain energy is mainly accumulated before the peak stress,the energy is released and dissipated during the failure process of the specimen,the curve of dissipated energy and elastic energy shows an alternating growth trend,and the proportion of dissipated energy increases continuously and exceeds the elastic strain energy rapidly after the peak stress.With the increase of specimen size,the total input strain energy,elastic strain energy and dissipation energy of the filling body at the peak stress show a nonlinear downward trend,indicating that the energy storage limit and bearing capacity of the filling body are decreasing with the increase of specimen size.The dissipative energy characteristics of the filling body can better reflect the four stages of damage evolution in the filling body.In the initial damage stage and the stable development stage of damage,the variation range of the dissipation energy curves of the sample with the size of 40 mm is slightly larger than that of the sample with other sizes.In the stage of damage acceleration and damage failure,the corresponding curves of 40 mm and 70.7 mm samples and 100 mm and 150 mm samples show two different growth trends.The smaller the size is,the more severe the damage is.The larger the size of the filling specimen is,the greater the change range of the elastic energy consumption ratio K value of the specimen is.The elastic energy consumption ratio K value curve increases first and then decreases,continues to a low value,and then increases near the peak stress.This variation law of K value curve of elastic energy consumption ratio can be used as the precursory characteristic of critical failure of filling body.

Key words: size effect, filling body, energy damage, elastic energy consumption ratio, failure precursor

中图分类号: 

  • TD853

图1

单位体积中弹性应变能与耗散能关系"

图2

不同尺寸充填体试样"

图3

RMT-150C岩石力学试验系统"

图4

不同尺寸充填体应力—应变曲线"

图5

不同尺寸充填体破坏形态(a)尺寸为40 mm;(b)尺寸为70.7 mm;(c)尺寸为100 mm;(d)尺寸为150 mm"

图6

不同尺寸充填体能量与应力—应变关系曲线"

表1

不同尺寸充填体峰值应力对应的应变能"

试样尺寸

/mm

峰值点总能量

/(kJ·m-3

峰值点弹性能

/(kJ·m-3

峰值点耗散能

/(kJ·m-3

40A11046048
A21106541
A31016146
平均值1056245
70.7B1753736
B2744237
B3794432
平均值764135
100C1373711
C2452413
C341299
平均值413011
150D1422510
D2372712
D3352614
平均值382612

图7

峰值点能量指标随尺寸变化曲线"

图8

不同尺寸充填体耗散能与应变关系曲线"

图9

弹性能耗比随应变的变化曲线"

Gan Deqing, Han Liang, Liu Zhiyi,et al,2018.Experimental study on the size effect of compressive strength of cemented filling body[J].Metal Mine,47(1):32-36.
Gao Wei, Wang Lei, Yang Dayong,2011.Rock damage evolution based on energy principle[J].Chinese Journal of Rock Mechanics and Engineering,30(Supp.2):4087-4092.
Guo Yuxia, Zhao Yonghui, Feng Guorui,et al,2021.Study on damage size effect of cemented gangue backfill body under uniaxial compression[J].Chinese Journal of Rock Mecha-nics and Engineering,40(12):2434-2444.
Hou Yongqiang, Yin Shenghua, Cao Yong,et al,2020a.Research on damage and energy dissipation characteristics of cemented backfill under different loading rates[J].Journal of Hunan University (Natural Sciences),47(8):108-117.
Hou Yongqing, Yin Shenghua, Cao Yong,et al,2020b.Analysis of damage characteristics and energy dissipation of cemented tailings backfill with different curing ages under uniaxial compression[J].Journal of Central South University(Science and Technology),51(7):1955-1965.
Jin Shaobo, Liu Kewei, Huang Jin,et al,2021.Study on damage constitutive model of backfill under uniaxial compression loading[J].Gold Science and Technology,29(4):555-563.
Li Tianbin, Chen Ziquan, Chen Guoqing,et al,2015.An experimental study of energy mechanism of sandstone with different moisture contents[J].Rock and Soil Mechanics,36(Supp.2):229-236.
Li Ziyun, Wu Guang, Huang Tianzhu,et al,2018.Variation of energy and criteria for strength failure of shale under traixial cyclic loading[J].Chinese Journal of Rock Mechanics and Engineering,37(3):662-670.
Lu Rong, Ma Fengshan, Zhao Jie,et al,2021.Analysis of acoustic emission index characteristics for indoor uniaxial compression test of backfill[J].Gold Science and Technology,29(2):218-225.
Pan Pengzhi, Zhou Hui, Feng Xiating,2008.Research on effect of loading conditions on failure processes of rocks with different sizes under uniaxial compression[J].Chinese Journal of Rock Mechanics and Engineering,27(Supp.2):3636-3642.
Wu J B, Wang E Y, Ren X K,et al,2017.Size effect of concrete specimens on the acoustic emission characteristics under uniaxial compression conditions[J].Advances in Materials Science and Engineering,2017:1-12.
Xie Heping, Ju Yang, Li Liyun,2005.Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J].Chinese Journal of Rock Mechanics and Engineering,24(17):3003-3010.
Xie Heping, Peng Ruidong, Ju Yang,2004.Energy dissipation of rock deformation and fracture[J].Chinese Journal of Rock Mechanics and Engineering,23(21):3565-3570.
Xu Wenbin, Song Weidong, Wang Dongxu,et al,2014.Energy dissipation properties of cement backfill body under triaxial compression conditions[J].Journal of China University of Mining and Technology,43(5):808-814.
Xue G L, Yilmaz E, Song W D,et al,2020.Fiber length effect on strength properties of polypropylene fiber reinforced cemented tailings backfill specimens with different sizes[J].Construction and Building Materials,241:118113.
Yilmaz E, Belem T, Benzaazoua M,2015.Specimen size effect on strength behavior of cemented paste backfills subjected to different placement conditions[J].Engineering Geology,185:52-62.
Yin Shenghua, Hou Yongqiang, Yang Shixing,et al,2021.Analysis of deformation failure and energy dissipation of mixed aggregate cemented backfill during uniaxial compression[J].Journal of Central South University(Science and Technology),52(3):936-947.
Zhang Zhizhen,2013.Energy Evolution Mechanism During Rock Deformation and Failure[D].Xuzhou:China University of Mining and Technology.
Zhao Kui, Xie Wenjian,Zengpeng,et al,2020a.Experimental study on AE characteristics of cemented tailings backfill failure process with different concentration[J].Journal of Applied Acoustics,39(4):543-549.
Zhao Kui, Zhuo Yulong, Zeng Peng,et al,2020b.Synergies in downward slice stoping with cemented filling[J].Metal Mine,49(5):19-25.
甘德清,韩亮,刘志义,等,2018.胶结充填体抗压强度尺寸效应的试验研究[J].金属矿山,47(1):32-36.
高玮,汪磊,杨大勇,2011.岩石损伤演化的能量方法研究[J].岩石力学与工程学报,30(增2):4087-4092.
郭育霞,赵永辉,冯国瑞,等,2021.矸石胶结充填体单轴压缩损伤破坏尺寸效应研究[J].岩石力学与工程学报,40(12):2434-2444.
侯永强,尹升华,曹永,等,2020a.不同加载速率下胶结充填体损伤特性与能量耗散特征分析[J].湖南大学学报(自然科学版),47(8):108-117.
侯永强,尹升华,曹永,等,2020b.单轴压缩下不同养护龄期尾砂胶结充填体损伤特性及能量耗散分析[J].中南大学学报(自然科学版),51(7):1955-1965.
靳少博,刘科伟,黄进,等,2021.单轴压缩下充填体损伤本构模型研究[J].黄金科学技术,29(4):555-563.
李天斌,陈子全,陈国庆,等,2015.不同含水率作用下砂岩的能量机制研究[J].岩土力学,36(增2):229-236.
李子运,吴光,黄天柱,等,2018.三轴循环荷载作用下页岩能量演化规律及强度失效判据研究[J].岩石力学与工程学报,37(3):662-670.
卢蓉,马凤山,赵杰,等,2021.充填体室内单轴压缩试验声发射指标特性分析[J].黄金科学技术,29(2):218-225.
潘鹏志,周辉,冯夏庭,2008.加载条件对不同尺寸岩石单轴压缩破裂过程的影响研究[J].岩石力学与工程学报,27(增2):3636-3642.
谢和平,鞠杨,黎立云,2005.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,24(17):3003-3010.
谢和平,彭瑞东,鞠杨,2004.岩石变形破坏过程中的能量耗散分析[J].岩石力学与工程学报,23(21):3565-3570.
徐文彬,宋卫东,王东旭,等,2014.三轴压缩条件下胶结充填体能量耗散特征分析[J].中国矿业大学学报,43(5):808-814.
尹升华,侯永强,杨世兴,等,2021.单轴压缩下混合集料胶结充填体变形破坏及能耗特征分析[J].中南大学学报(自然科学版),52(3):936-947.
张志镇,2013.岩石变形破坏过程中的能量演化机制[D].徐州:中国矿业大学.
赵奎,谢文健,曾鹏,等,2020a.不同浓度的尾砂胶结充填体破坏过程声发射特性试验研究[J].应用声学,39(4):543-549.
赵奎,卓毓龙,曾鹏,等,2020b.下向分层胶结充填开采中的协同性[J].金属矿山,49(5):19-25.
[1] 范永亮, 崔继强, 张元坤, 李凤, 黄春云, 顾元统, 何建元. 混合粗骨料配比对充填体强度及浆体流动性能的影响规律[J]. 黄金科学技术, 2022, 30(2): 263-271.
[2] 张钦礼, 余一波, 王道林. 龙首矿充填体悬臂结构的稳定性分析与评价[J]. 黄金科学技术, 2022, 30(2): 254-262.
[3] 何建元,李宏业,高谦,尹升华. 采矿废石—尾砂混合骨料在下向分层进路胶结充填采矿中应用的试验研究[J]. 黄金科学技术, 2021, 29(4): 564-572.
[4] 靳少博,刘科伟,黄进,靳绍虎. 单轴压缩下充填体损伤本构模型研究[J]. 黄金科学技术, 2021, 29(4): 555-563.
[5] 徐路路,张钦礼,冯如. 基于采场结构参数优化后的充填体强度数值模拟[J]. 黄金科学技术, 2021, 29(3): 421-432.
[6] 卢蓉,马凤山,赵杰,郭捷,顾金钟,黄业强. 充填体室内单轴压缩试验声发射指标特性分析[J]. 黄金科学技术, 2021, 29(2): 218-225.
[7] 宋春辉, 李祥龙, 王建国, 宋飞. 矿柱爆破回采对胶结充填体损伤影响试验研究[J]. 黄金科学技术, 2020, 28(4): 558-564.
[8] 寇永渊, 李光, 邹龙, 马凤山, 郭捷. 金川二矿区+1 000 m中段水平矿柱回采方法研究[J]. 黄金科学技术, 2020, 28(3): 353-362.
[9] 黄照东,张德明,刘一锴,张钦礼,王浩. 柠檬酸浸法预处理对磷石膏充填体性能的影响[J]. 黄金科学技术, 2020, 28(1): 97-104.
[10] 田军, 刘建坡, 杨勇, 张长银. 进路充填法爆破扰动诱发充填体破坏规律研究[J]. 黄金科学技术, 2019, 27(5): 687-695.
[11] 肖文丰,陈建宏,陈毅,王喜梅. 基于神经网络与遗传算法的多目标充填料浆配比优化[J]. 黄金科学技术, 2019, 27(4): 581-588.
[12] 叶永飞,张雅楠,李士超,曹世荣,韩建文,王晓军. 循环载荷下胶结充填体损伤声发射表征[J]. 黄金科学技术, 2018, 26(6): 819-825.
[13] 李文臣,郭利杰,陈鑫政,李宗楠,李欣. 尾砂胶结充填体三维空间强度分布相似模拟试验研究[J]. 黄金科学技术, 2018, 26(4): 528-534.
[14] 史采星,郭利杰,陈鑫政. 采场充填料浆流动与离析规律的试验研究[J]. 黄金科学技术, 2018, 26(4): 520-527.
[15] 王新民, 赵茂阳, 荣帅, 王浩, 张云海. APAM对全尾砂胶结充填体早期强度影响研究[J]. 黄金科学技术, 2018, 26(3): 305-311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!