img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (2): 233-242.doi: 10.11872/j.issn.1005-2518.2022.02.163

• 采选技术与矿山管理 • 上一篇    下一篇

不同应力上限和加载速率下的黄砂岩疲劳特性研究

肖峰(),曹平,刘智振,张子洋   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2021-11-07 修回日期:2021-12-28 出版日期:2022-04-30 发布日期:2022-06-17
  • 作者简介:肖峰(1997-),男,江西赣州人,硕士研究生,从事采矿工程和岩石力学研究工作。195511038@csu.edu.cn
  • 基金资助:
    湖南省水利科技重大项目“大断面穿江隧道施工及运营期防洪堤变形预测与稳定性控制”(XSKJ2019081-10)

Study on Fatigue Characteristics of Yellow Sandstone Under Different Stress Upper Limits and Loading Rates

Feng XIAO(),Ping CAO,Zhizhen LIU,Ziyang ZHANG   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2021-11-07 Revised:2021-12-28 Online:2022-04-30 Published:2022-06-17

摘要:

为研究黄砂岩单轴疲劳加载的特性,开展了不同应力上限和加载速率下的单轴疲劳荷载试验。试验结果表明:黄砂岩的疲劳试验曲线受到单轴压缩应力—应变曲线的控制,疲劳极限变形与峰后对应变形一致;砂岩疲劳过程的不可逆变形和耗散能密度均具有三阶段演化规律,依据倒“S”型损伤模型,验证了黄砂岩疲劳损伤三阶段演化规律;分析认为三阶段规律的本质是砂岩的塑性变形和内部孔隙微裂纹生成以及扩展速度的不同所呈现的结果。研究表明应力上限和加载速率对疲劳寿命有显著影响,根据所得应力—寿命公式,可以估计砂岩在一定条件下的疲劳寿命。

关键词: 黄砂岩, 疲劳荷载, 不可逆变形, 耗散能密度, 损伤模型:疲劳寿命

Abstract:

In order to study the characteristics of yellow sandstone under uniaxial fatigue loading and fully understand the deformation and failure mechanism of rock under cyclic loading,uniaxial fatigue load tests under different stress upper limits and loading rates were carried out to systematically analyze the fatigue characteristics of yellow sandstone under cyclic loading from three aspects of deformation,energy evolution and damage characteristics.The yellow sandstone used in the test was collected from Dongchuan District,Kunming City,Yunnan Province,and the uniaxial compressive strength is 50.2 MPa.In different stress upper limit fatigue tests,the stress upper limit of cyclic loading is set as 80%,85%,90% and 95% of uniaxial strength,and the lower limit is fixed as 50%.And four loading rates were set as 600 N/s,700 N/s,800 N/s and 900 N/s for fatigue tests with different loading rates.The test results show that the curves of loading and unloading stage do not coincide,and the fatigue process curve presents a form characteristic of “sparse-intensive-sparse”.The curves show that the fatigue deformation failure of yellow sandstone is controlled by uniaxial compression stress-strain curve,and the ultimate deformation is consistent with the corresponding post-peak deformation.The irreversible deformation development curve of sandstone has three stages:Initial deformation stage,stable deformation stage and accelerated deformation stage.This feature is consistent with the evolution trend of dissipation energy density in fatigue process.The dissipated energy is high in the first few cycles,and then decreases rapidly and tends to be stable.And the dissipated energy increases significantly when the specimen is near failure.Moreover,residual deformation is used to define the damage degree of yellow sandstone,and the inverted “S” model is used to describe the damage evolution process.The results show that the parameter fitting effect of all specimens is more than 95%,indicating that it is reasonable to describe the fatigue damage process of yellow sandstone by inverted “S” model.Finally,the results show that the fatigue life of yellow sandstone decreases with the increase of stress upper limit and increases with the increase of loading rate.The biggest influence on the fatigue life of rock is in the stable deformation stage.The fatigue life of yellow sandstone under certain conditions can be predicted by the stress-life fitting formula,and the results provide reference for judging rock instability failure.

Key words: yellow sandstone, fatigue load, irreversible deformation, dissipated energy density, damage model, fatigue life

中图分类号: 

  • TU45

图1

试验加载波形示意图"

图2

不同循环加载速率"

图3

不同应力上限和加载速率疲劳试验曲线(a)~(d)不同应力上限试验曲线;(e)~(h)不同加载速率试验曲线"

图4

试件YS-95曲线局部放大图"

表1

疲劳加载试验参数及应变结果"

试件编号下限应力比上限应力比疲劳速率/(N·s-1疲劳寿命/次控制点应变/%破坏点应变/%相对差值/%
YS-800.500.805004101.15401.1346-1.68
YS-850.500.855002381.15361.1220-2.74
YS-900.500.905001721.15321.1253-2.42
YS-950.500.95500791.15171.16701.33
YS-6000.500.9560061.15171.16531.18
YS-7000.500.95700101.15171.16180.87
YS-8000.500.95800181.15171.19703.93
YS-9000.500.95900641.15171.16911.51

图5

累积应变发展曲线"

图6

单个循环耗散能计算示意图"

图7

耗散能密度变化曲线"

图8

试件YS-95残余应变法损伤曲线"

图9

试件YS-95耗散能法损伤曲线"

图10

试件YS-900损伤的倒“S”型损伤模型拟合"

表2

损伤模型参数拟合结果"

试件编号D0αβpR2SSE
YS-800.55670.48343.462010.77000.98300.0092
YS-850.60540.31051.047013.79000.97630.0042
YS-900.59120.40442.211013.38000.97230.0055
YS-950.64080.28741.034016.25000.99010.0005
YS-6000.71790.24881.216012.47000.99180.0000
YS-7000.60100.35531.200013.45000.98240.0002
YS-8000.60040.36361.300013.81000.99100.0001
YS-9000.57230.38201.133018.13000.99910.0000

图11

黄砂岩试件应力—寿命拟合曲线"

Attewell P B, Farmer I W,1973.Fatigue behaviour of rock[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,10(1):1-9.
Bagde M N, Petroš V,2005.Waveform effect on fatigue properties of intact sandstone in uniaxial cyclical loading[J].Rock Mechanics & Rock Engineering,38(3):169-196.
Cerfontaine B, Collin F,2017.Cyclic and fatigue behaviour of rock materials:Review,interpretation and research perspectives[J].Rock Mechanics and Rock Engineering,51(1/2):1-24.
Fuenkajorn K, Phueakphum D,2010.Effects of cyclic loading on mechanical properties of Maha Sarakham salt[J].Engineering Geology,112(1/2/3/4):43-52.
Gatelier N, Pellet F, Loret B,2002.Mechanical damage of an anisotropic rock under cyclic triaxial tests[J].International Journal of Rock Mechanics and Mining Sciences,39(3):335-354.
Gong F Q, Yan J Y, Luo S,et al,2019.Investigation on the linear energy storage and dissipation laws of rock materials under uniaxial compression[J].Rock Mechanics and Rock Engineering,52(11):4237-4255.
He M M, Li N, Zhu C H,et al,2019.Experimental investigation and damage modeling of salt rock subjected to fatigue loading[J].International Journal of Rock Mechanics and Mining Sciences,114:17-23.
Le J L, Manning J, Labuz J F,2014.Scaling of fatigue crack growth in rock[J].International Journal of Rock Mechanics and Mining Sciences,72:71-79.
Li Jiangteng, Xiao Feng, Ma Yupei,2020.Deformation damage and energy evolution of red sandstone under uniaxial cyclic loading and unloading[J].Journal of Hunan University(Natural Science),47(1):139-146.
Li T T, Pei X J, Guo J,et al,2020.An energy-based fatigue damage model for sandstone subjected to cyclic loading[J].Rock Mechanics and Rock Engineering,53(11):5069-5079.
Li Xinwei, Yao Zhishu, Huang Xianwen,et al,2021.Investigation of deformation and failure characteristics and energy evolution of sandstone under cyclic loading and unloading[J].Rock and Soil Mechanics,42(6):1693-1704.
Liu Y, Dai F, Dong L,et al,2018.Experimental investigation on the fatigue mechanical properties of intermittently jointed rock models under cyclic uniaxial compression with different loading parameters[J].Rock Mechanics and Rock Engineering,51:47-68.
Liu Y, Dai F, Fan P X,et al,2017a.Experimental investigation of the influence of joint geometric configurations on the mechanical properties of intermittent jointed rock models under cyclic uniaxial compression[J].Rock Mechanics and Rock Engineering,50(6):1453-1471.
Liu Y, Dai F, Zhao T,et al,2017b.Numerical investigation of the dynamic properties of intermittent jointed rock models subjected to cyclic uniaxial compression[J].Rock Mechanics and Rock Engineering,50(1):89-112.
Momeni A, Karakus M, Khanlari G R,et al,2015.Effects of cyclic loading on the mechanical properties of a granite[J].International Journal of Rock Mechanics and Mining Sciences,77:89-96.
Qiu S L, Feng X T, Xiao J Q,et al,2014.An experimental study on the pre-peak unloading damage evolution of marble[J].Rock Mechanics and Rock Engineering,47(2):401-419.
Ray S K, Sarkar M, Singh T N,1999.Effect of cyclic loading and strain rate on the mechanical behaviour of sandstone[J].International Journal of Rock Mechanics and Mining Sciences,36(4):543-549.
Ren S, Bai Y M, Zhang J P,et al,2013.Experimental investigation of the fatigue properties of salt rock[J].International Journal of Rock Mechanics and Mining Sciences,64:68-72.
Tien Y M, Lee D H, Juang C H,1990.Strain,pore pressure and fatigue characteristics of sandstone under various load conditions[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,27(4):283-289.
Wang Ruihong, Li Jianlin, Jiang Yuzhou,et al,2010.Experimental research on influence of cyclic loading and unloading on rock mass residual strength[J].Chinese Journal of Rock Mechanics and Engineering,29(10):2103-2108.
Wiebols G A, Cook N,1968.An energy criterion for the strength of rock in polyaxial compression[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,5(6):529-549.
Xiao J Q, Ding D X, Jiang F L,et al,2010.Fatigue damage variable and evolution of rock subjected to cyclic loading[J].International Journal of Rock Mechanics and Mining Sciences,47:461-468.
Xiao J Q, Ding D X, Xu G,et al,2009.Inverted S-shaped model for nonlinear fatigue damage of rock[J].International Journal of Rock Mechanics and Mining Sciences,46(3):643-648.
Xiao J Q, Feng X T, Ding D X,et al,2011.Investigation and modeling on fatigue damage evolution of rock as a function of logarithmic cycle[J].International Journal for Numerical and Analytical Methods in Geomechanics,35(10):1127-1140.
Xu S L, Wu W, Zhang H,et al,2002.Experimental study on cyclic property of rocks under uniaxial compression[J].Proceedings of Spie the International Society for Optical Engineering,4537:261-264.
Xu Ying, Li Chengjie, Zheng Qiangqiang,et al,2019.Analysis of energy evolution and damage characteristics of mudstone under cyclic loading and unloading[J].Chinese Journal of Rock Mechanics and Engineering,38(10):2084-2091.
Yang Y J, Xing L Y, Duan H Q,et al,2018.Fatigue damage evolution of coal under cyclic loading[J].Arabian Journal of Geosciences,11(18):560..
Yang Yu, Sun Yidan,2020.Fatigue characteristics of sandstone with different stress amplitude under uniaxial cyclic loading[J].Journal of Liaoning Technical University(Natural Science),39(5):403-408.
Zhang C Y, Wang Y X, Ruan H,et al,2021.The strain characteristics and corresponding model of rock materials under uniaxial cyclic load/unload compression and their deformation and fatigue damage analysis[J].Archive of Applied Mechanics,91(6):2481-2496.
Zhang P, Xu J G, Li N,2008.Fatigue properties analysis of cracked rock based on fracture evolution process[J].Journal of Central South University of Technology,15:95-99.
Zhao Kai, Qiao Chunsheng, Luo Furong,et al,2014.Experiment study of fatigue characteristics of limestone samples subjected to uniaxial cyclic loading with different frequencies[J].Chinese Journal of Rock Mechanics and Engineering,33(Supp.2):3466-3475.
李江腾,肖峰,马钰沛,2020.单轴循环加卸载作用下红砂岩变形损伤及能量演化[J].湖南大学学报(自然科学版),47(1):139-146.
李欣慰,姚直书,黄献文,等,2021.循环加卸载下砂岩变形破坏特征与能量演化研究[J].岩土力学,42(6):1693-1704.
王瑞红,李建林,蒋昱州,等,2010.循环加卸载对岩体残余强度影响的试验研究[J].岩石力学与工程学报,29(10):2103-2108.
徐颖,李成杰,郑强强,等,2019.循环加卸载下泥岩能量演化与损伤特性分析[J].岩石力学与工程学报,38(10):2084-2091.
杨逾,孙艺丹,2020.变应力幅值下砂岩的单轴循环加载疲劳特性[J].辽宁工程技术大学学报(自然科学版),39(5):403-408.
赵凯,乔春生,罗富荣,等,2014.不同频率循环荷载下石灰岩疲劳特性试验研究[J].岩石力学与工程学报,33(增2):3466-3475.
[1] 周盛全, 王瑞, 田诺成, 李栋伟. 冲击荷载作用下热处理花岗岩动态力学特性研究[J]. 黄金科学技术, 2022, 30(2): 222-232.
[2] 胡建华,郭萌萌,周坦,张涛. 基于改进迁移学习算法的岩体质量评价模型[J]. 黄金科学技术, 2021, 29(6): 826-833.
[3] 李柏锦,李响,王彦,尹土兵,李夕兵. 温度冲击对花岗岩动态拉伸力学性能的影响[J]. 黄金科学技术, 2021, 29(4): 545-554.
[4] 王玺,马春德,刘兴全,姜明伟,范玉赟. 滨海矿区地应力与岩石力学参数随埋深的变化规律及其相互关系[J]. 黄金科学技术, 2021, 29(4): 535-544.
[5] 杨少峰,蒲成志,曾佳君,李益龙. 不同张开度裂隙类岩体循环加卸载下滞回环特征与损伤变形分析[J]. 黄金科学技术, 2021, 29(3): 392-400.
[6] 杜坤,杨颂歌,苏睿,杨成志,王少锋. 不同应力条件下硬岩强度与破裂特性试验研究[J]. 黄金科学技术, 2021, 29(3): 372-381.
[7] 胡建华,董喆喆,马少维,秦亚光,徐晓,代转. 应力—渗流耦合作用下损伤岩石渗流特性[J]. 黄金科学技术, 2021, 29(3): 355-363.
[8] 王卫华,罗杰,刘田,韩震宇. 节理粗糙度对应力波传播及试样破坏影响的颗粒流模拟[J]. 黄金科学技术, 2021, 29(2): 208-217.
[9] 田睿,孟海东,陈世江,王创业,孙德宁,石磊. 基于机器学习的3种岩爆烈度分级预测模型对比研究[J]. 黄金科学技术, 2020, 28(6): 920-929.
[10] 郭婧宇,蒲成志,贺桂成,李益龙,杨少峰,曾佳君. 静态—准静态加载下含裂隙类岩材料破断试验及声发射特性分析[J]. 黄金科学技术, 2020, 28(6): 877-884.
[11] 贺桂成, 陈科旭, 戴兵, 王程程. 十字交叉裂隙扩展机理试验与数值模拟研究[J]. 黄金科学技术, 2020, 28(4): 509-520.
[12] 许瑞, 侯奎奎, 王玺, 刘兴全, 李夕兵. 基于核主成分分析与SVM的岩爆烈度组合预测模型[J]. 黄金科学技术, 2020, 28(4): 575-584.
[13] 胡健, 宫凤强, 贾航宇. SHPB压缩试验中红砂岩的力学与能量耗散特性研究[J]. 黄金科学技术, 2020, 28(3): 411-420.
[14] 张栩栩,杨仕教,曾佳君,罗可,蒲成志. 含预制缺陷类岩体模型破断试验与分析[J]. 黄金科学技术, 2020, 28(2): 255-263.
[15] 冯春迪,黄仁东. 红砂岩中矿物颗粒的塑性应变分析[J]. 黄金科学技术, 2019, 27(4): 557-564.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!