img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (2): 151-164.doi: 10.11872/j.issn.1005-2518.2022.02.139

• 矿产勘查与资源评价 •    下一篇

江南造山带黄金洞金矿蚀变岩型金矿化形成机制研究

许可1,2(),许德如1,2,3()   

  1. 1.东华理工大学核资源与环境国家重点实验室,江西 南昌 330013
    2.东华理工大学地球科学学院,江西 南昌 330013
    3.东华理工大学江西省放射性地学大数据技术工程实验室,江西 南昌 330013
  • 收稿日期:2021-09-28 修回日期:2022-01-05 出版日期:2022-04-30 发布日期:2022-06-17
  • 通讯作者: 许德如 E-mail:1318452605@qq.com;xuderu@gig.ac.cn
  • 作者简介:许可(1997-),女,湖南岳阳人,硕士研究生,从事金矿勘查研究工作。1318452605@qq.com
  • 基金资助:
    国家自然科学基金项目“江南造山带万古金矿床成矿流体活动的精细研究”(42002090);“江南古陆金(多金属)大规模成矿的机理研究”(41930428)

Study on the Formation Mechanism of Altered Rock Type Gold Mineralization of Huangjindong Gold Deposit in Jiangnan Orogenic Belt

Ke XU1,2(),Deru XU1,2,3()   

  1. 1.State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
    2.School of Earth Sciences, East China University of Technology, Nanchang 330013, Jiangxi, China
    3.Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology, East China University of Technology, Nanchang 330013, Jiangxi, China
  • Received:2021-09-28 Revised:2022-01-05 Online:2022-04-30 Published:2022-06-17
  • Contact: Deru XU E-mail:1318452605@qq.com;xuderu@gig.ac.cn

摘要:

蚀变岩型矿石是热液型金矿床中重要的矿石类型,其形成与水岩反应密切相关。江南造山带黄金洞金矿中的蚀变岩型矿石多发育在褪色化蚀变带中,目前其形成机制尚不清楚。野外勘查、岩相学观察和TIMA分析表明,蚀变带中最主要的特征是广泛发育菱铁矿、绢云母和隐晶质石英。蚀变岩型矿石局部可见较多硫化物,与含金石英脉中的硫化物具有相似的化学成分,说明为同一期流体作用的产物。部分硫化物切穿碳酸盐矿物,说明褪色化蚀变形成于成矿前。TIMA和μ-XRF分析表明,蚀变带发生硅化和绢云母化,且Fe聚集成点状。因此,推测成矿前的水岩反应形成大量菱铁矿斑点,为成矿提供良好的化学圈闭。成矿期含金流体与菱铁矿发生化学反应,通过硫化作用促进金的沉淀,为黄金洞金矿蚀变岩型矿石的成矿机制。

关键词: 热液型金矿, 蚀变岩型矿石, 褪色化蚀变, 菱铁矿, 硫化物, 成矿机制, 江南造山带

Abstract:

Quartz (carbonate) vein type and altered rock type ores are the most important ore types in hy-drothermal gold deposits,and the quartz vein type ores are widely studied. However,altered rock type ores are much less well studied due to the complexity of mineral compositions and unavailability for fluid inclusion and geochemical analysis. Compared with quartz veins,altered rock ores generally has a lower grade but larger reserve,which is of great significance for gold exploration. Altered rock ores,closely associated with fluid-rock interactions,represent a typical mineralization style in hydrothermal gold deposits. In the Huangjindong gold deposit of the Jiangnan orogenic belt,South China,altered slate ores are mostly developed in the bleaching alteration zone.Previous research demonstrates that the alteration associated with mineralization mainly include sericitization,silicification,carbonatization and sulfidation,but the gold precipitation mechanism of altered slate ores remains indistinct. Based on field work, and petrographic observations,altered rock type ores in the Huangjindong gold deposit commonly occur in the bleaching alteration zone with a remarkable color transformation from greenish grey to yellow-pale grey.The bleaching alteration zone generally distribute symmetrically along carbonate-quartz veins and mainly characterized by the occurrence of siderite spots,as well as sericites and cryptocrystalline quartzes. Abundant gold-bearing sulfide in altered slates aggregate near carbonate spots,sharing similar geochemical compositions with those in quartz veins viaElectron Probe Microanalysis (EPMA).These sulfides locally crosscut siderite grains,as well as the cementing of partially dissolved siderite grains by quartz,demonstrating that the fading alteration took place before gold mineralization and likely generated by the reaction of CO2-rich fluids with host rocks. Tescan Integrated Mineral Analyzer (TIMA) analysis shows that two alteration zones have been observed in the altered slate,from the proximal to the distal side of the carbonate-quartz vein are silicification and sericitization,respectively. Micro area X-ray Fluorescence Surface Scan (μ-XRF) elemental mapping on carbonate-quartz vein and adjacent alteration zone suggest that most elements have obvious zoning. Mg,Fe and Mn are aggregated into spots in the alteration zones because of the appearance of siderite. Si is abundant in silicification zone,K and Al contents are high in sericitization zone. These results show that large amounts of siderite spots are generated during the pre-mineralization fluid-rock reaction,and thus provide favorable chemical traps for gold mineralization. The chemical reaction between gold-bearing fluid and siderite spot occurs during the ore-forming period,and contributes to gold mineralization by triggering sulfidation,which is the major genesis for the altered slate ores in the Huangjindong gold deposit.

Key words: hydrothermal gold deposit, altered rock type ore, bleaching alteration, siderite, sulfide, metallogenic mechanism, Jiangnan orogenic belt

中图分类号: 

  • P618.51

图1

湘东北地区区域地质图(据 Deng et al.,2020 修改)1.第四系;2.白垩纪—古近纪砂岩、砾岩和杂砂岩;3.中泥盆世—中三叠世碳酸盐岩、砂岩和泥岩;4.震旦纪—志留纪砂岩、页岩、砾岩和板岩;5.新元古代板溪群碎屑沉积岩;6.新元古代冷家溪群浅变质浊积岩;7.新太古代—古元古代(?)连云山岩群和涧溪冲岩群角闪岩相—麻粒岩相变质岩;8.燕山期花岗岩;9.印支期花岗岩;10.加里东期花岗岩;11.新元古代花岗岩;12.断层;13.金矿床或矿化点;14.韧性剪切带;15.Cu-Pb-Zn-Au矿床;16.Co矿床; A-汨罗断陷盆地;B-幕阜山—望湘断隆;C-长沙—平江断陷盆地;D-浏阳—衡东断隆;E-醴陵—攸县断陷盆地"

图2

黄金洞金矿地质图(据 Deng et al.,2020 修改)1.新元古代小木坪组第二段;2.新元古代小木坪组第一段;3.第四系;4.倒转向斜;5.倒转背斜;6.金矿脉;7.断裂;8.取样位置"

图3

黄金洞金矿矿脉、褪色化蚀变带手标本和显微照片(a) 与含矿石英脉相邻的褪色化蚀变带;(b) 褪色化蚀变带的颜色变化;(c) 碳酸盐—石英脉两侧对称的褪色化蚀变带;(d) 含金蚀变岩;(e) 黄铁矿切穿菱铁矿;(f) 浸染状黄铁矿位于菱铁矿附近;(g) 溶蚀的菱铁矿边缘局部被石英胶结;(h) 碳酸盐—石英脉由绢云母、方解石、石英、绿泥石和硫化物组成;(i) 碳酸盐—石英脉被含毒砂、黄铁矿的矿脉横切Apy-毒砂;Py-黄铁矿;Sd-菱铁矿;Sph-闪锌矿;Qtz-石英;Cc-方解石;Ser-绢云母"

图4

利用TIMA对碳酸盐—石英脉和褪色化蚀变带进行的矿物鉴定和填图"

图5

碳酸盐—石英脉和褪色化蚀变带的μ-XRF元素填图(a)~(k) μ-XRF元素填图;(l) 对应的薄片照片"

表1

石英脉中黄铁矿和黄铜矿的电子探针分析结果"

序号矿物名称ZnCuCdFeMnSNiTeAsAgPbCoAuSe总计
1黄铁矿-0.53-46.620.1653.141.06--0.03-0.55-0.01102.10
2黄铁矿0.040.610.0346.750.0752.701.10--0.010.060.790.06-102.20
3黄铁矿0.050.07-46.170.0752.810.68-0.01--0.090.05-99.98
4黄铁矿-0.040.0545.960.2952.740.560.03---0.080.060.0299.82
5黄铁矿0.10--46.20-52.550.05--0.030.020.05--99.00
6黄铁矿-0.06-46.360.0152.460.440.030.010.010.030.08-0.0199.49
7黄铁矿0.05-0.0146.52-52.840.460.03-0.030.020.10-0.03100.08
8黄铁矿---46.640.0253.520.250.02-0.020.020.08--100.57
9黄铁矿0.060.090.0246.96-52.720.310.08---0.110.060.04100.44
10黄铁矿0.080.020.0245.82-52.370.550.02-0.030.030.110.070.0199.11
11黄铁矿0.360.09-46.03-52.94---0.010.090.10-0.0599.66
1黄铜矿2.5535.73-29.740.1134.69---0.03-0.050.03-102.94
2黄铜矿3.2834.59-29.290.0634.570.01----0.06-0.04101.89
3黄铜矿2.8835.64-31.790.0534.72-----0.07-0.01105.15
4黄铜矿0.1635.130.0230.78-35.79--0.01--0.050.01-101.94
5黄铜矿0.2335.52-30.780.0134.92--0.03-0.020.04--101.54
6黄铜矿-34.56-31.050.0435.70-0.04-0.020.120.06--101.59
7黄铜矿0.0334.75-30.790.0334.94--0.020.03-0.07-0.01100.69
8黄铜矿0.0634.51-30.68-35.62-0.04-0.010.010.07--101.00
9黄铜矿-34.59-30.020.0133.17---0.030.250.07--98.14
10黄铜矿-35.41-30.71-33.55-0.010.010.030.050.05--99.83
11黄铜矿-35.550.0430.58-33.42-0.05-0.020.260.07--99.98
12黄铜矿0.0235.15-30.37-33.56--0.030.040.220.04--99.41
13黄铜矿0.0935.320.0230.84-33.230.030.070.040.020.190.03--99.87

表2

蚀变围岩中黄铁矿和黄铜矿的EPMA元素值"

序号矿物名称ZnCuCdFeMnSNiTeAsAgPbCoAuSe总计
1黄铁矿-0.02-46.95-52.70--0.13-0.010.09--99.91
2黄铁矿--0.0146.250.0153.020.030.010.08--0.090.08-99.59
3黄铁矿-0.040.0246.09-53.39-0.060.060.01-0.100.05-99.81
4黄铁矿--0.0146.19-53.340.06-0.04--0.110.040.0399.82
5黄铁矿-0.080.0446.41-52.80--0.12--0.05--99.50
6黄铁矿---46.130.0152.900.020.020.05--0.13-0.0199.27
7黄铁矿---46.75-53.030.02-0.140.02-0.080.08-100.11
8黄铁矿0.060.01-45.88-52.760.03----0.060.04-98.83
9黄铁矿0.02-0.0346.66-52.600.020.010.050.020.030.080.010.0199.53
10黄铁矿-0.01-46.780.0152.320.01-0.02--0.02-0.0199.18
11黄铁矿0.010.040.0146.710.0352.47---0.02-0.14--99.44
12黄铁矿-0.01-46.74-52.71-----0.090.010.0299.57
13黄铁矿-0.02-46.47-52.920.010.03--0.070.07-0.0299.60
14黄铁矿--0.0146.41-52.40-0.02---0.09--98.93
15黄铁矿-0.01-46.320.0252.06--0.050.04-0.07-0.0298.59
16黄铁矿---46.460.0152.30-0.010.130.02-0.080.030.0399.05
1黄铜矿0.0836.180.0130.070.1836.09-0.060.04-0.010.05--102.76
2黄铜矿0.0735.900.0129.860.0435.59-0.030.030.04-0.070.010.01101.66
3黄铜矿0.0535.40-30.220.2536.29-----0.08-0.04102.34
4黄铜矿0.1035.30-30.940.2736.280.070.01---0.04--103.01
5黄铜矿0.0236.08-30.510.2335.47---0.01-0.080.020.01102.44
6黄铜矿-35.530.0230.680.2735.27-0.05---0.10--101.91
7黄铜矿0.0435.53-30.830.3134.08---0.01-0.07-0.06100.92
8黄铜矿0.0334.95-30.760.3033.860.04--0.01-0.04--99.99
9黄铜矿0.0234.53-30.830.3333.790.05--0.04-0.03--99.61
10黄铜矿0.0434.13-30.720.2933.75---0.03-0.04--99.00
11黄铜矿0.0334.190.0230.520.4032.960.03--0.02-0.030.02-98.22
12黄铜矿0.0134.66-30.180.3834.69-0.01---0.07-0.02100.02
13黄铜矿0.0135.04-30.460.2734.850.03--0.01-0.04--100.71
14黄铜矿0.0335.02-30.290.3434.62-0.010.02--0.050.03-100.40
15黄铜矿0.0434.69-30.560.3333.80-----0.090.04-99.54
16黄铜矿0.0635.42-30.810.2434.00---0.010.070.05--100.66
17黄铜矿0.0635.850.0230.610.2234.22-----0.05-0.05101.09
18黄铜矿-35.360.0230.690.2633.85-----0.10-0.02100.30
19黄铜矿0.0235.570.0230.730.2134.39-0.040.01--0.030.01-101.03
20黄铜矿-35.140.0130.610.2734.95-----0.06--101.04
21黄铜矿0.0335.36-30.390.2233.84----0.030.040.030.0199.95
22黄铜矿-35.43-30.530.2233.94-----0.01-0.01100.14
23黄铜矿-35.31-30.740.2433.790.040.02-0.01-0.04--100.19
24黄铜矿-35.54-30.840.2334.040.010.02---0.010.03-100.74

图6

含金蚀变岩和含金石英脉中黄铁矿和黄铜矿的EPMA和LA-ICP-MS分析结果"

表3

石英脉中黄铁矿的LA-ICP-MS分析结果"

序号矿物名称CoNiCuSbWAuTlPbBiCo/Ni
1黄铁矿49.90132.00116.0095.701.3283.500.072 160.0010.200.38
2黄铁矿14.5072.1047.9014.903.5437.40-26.509.160.20
3黄铁矿45.8033.70716.0018.502.5038.200.044 167.008.601.36
4黄铁矿6.6525.1033.3015.003.3928.60-66.4012.300.27
5黄铁矿15.5062.1063.8082.701.0838.500.01112.008.870.25
6黄铁矿57.20136.0064.2017.602.1765.600.053 534.008.300.42
7黄铁矿1.626.3544.4020.103.3932.700.01456.008.900.25
8黄铁矿22.9025.2034.0018.803.5513.900.0327.905.430.91
9黄铁矿2.5615.9060.1023.503.7937.60-60.108.770.16
10黄铁矿6.3218.3077.9018.803.3357.700.02122.0015.200.35

表4

蚀变围岩中黄铁矿的LA-ICP-MS分析结果"

序号矿物名称CoNiCuSbWAuTlPbBiCo/Ni
1黄铁矿5.2537.6013.0020.400.8512.700.0192.207.290.14
2黄铁矿8.1037.00211.00169.008.7817.100.063 854.0010.500.22
3黄铁矿1.7320.7021.7019.603.0517.600.03579.005.010.08
4黄铁矿3.6519.1024.6025.404.3024.000.01118.005.780.19
5黄铁矿3.5915.4019.4015.803.9014.900.08199.003.580.23
6黄铁矿2.7019.5023.2025.102.7917.200.01846.007.220.14
7黄铁矿4.8420.4016.4014.002.3319.400.0187.604.560.24
8黄铁矿41.9016.0011.4011.502.783.580.0149.809.912.62
9黄铁矿2.2339.2096.1068.501.2343.300.04659.0012.600.06
10黄铁矿4.668.3910.005.061.3614.500.01176.002.920.56
Bierlein F P, Arne D, McKnight S,et al,2000. Wall-rock petrology and geochemistry in alteration halos associated with mesothermal gold mineralization,central Victoria,Australia[J].Economic Geology,95:283-311.
Charvet J, Shu L, Shi Y,et al,1996. The building of south China:Collision of Yangzi and Cathaysia blocks,problems and tentative answers[J].Journal of Southeast Asian Earth Sciences,13:223-235.
Cox S F, Sun S S, Etheridge M A,et al,1995. Structural and geochemical controls on the development of turbidite-hosted gold quartz vein deposits,Wattle Gully mine,central Victoria,Australia[J].Economic Geology,90:1722-1746.
Deng J, Wang Q F,2016. Gold mineralization in China:Metallogenic provinces, deposit types and tectonic framework[J]. Gondwana Research,36:219-274.
Deng T, Xu D, Chi G,et al,2017. Geology,geochronology,geochemistry and ore genesis of the Wangu gold deposit in northeastern Hunan Province,Jiangnan Orogen,South China[J].Ore Geology Reviews,88:619-637.
Deng T, Xu D, Chi G,et al,2020. Caledonian (Early Paleozoic) veins overprinted by Yanshanian (Late Mesozoic) gold mineralization in the Jiangnan Orogen:A case study on gold deposits in northeastern Hunan,South China[J].Ore Geology Reviews,124:103586.
Deng Teng,2018. Introcontinental Tectonic-magmatic Reactivation and Its Control Over Gold Mineralization in Northeastern Hunan Province,South China[D]. Guangzhou:Guangzhou Institute of Geochemistry,Chinese Academy of Sciences.
Dugdale A L, Wilson C J L, Squire R J,2006. Hydrothermal alteration at the Magdala gold deposit,Stawell,western Victoria[J]. Australian Journal of Earth Sciences: An International Geoscience Journal of the Geological Society of Australia,53(5):733-757.
Gan C, Wang Y, Barry T L,et al,2020. Late Jurassic high-Mg andesites in the Youjiang Basin and their significance for the southward continuation of the Jiangnan Orogen,South China[J]. Gondwana Research,77:260-273.
Goldfarb R J, Baker T, Dube B,et al,2005. Distribution, character and genesis of gold deposits in metamorphic terranes[C]//Hedenquist J W,Thompson J F H,Goldfarb R J,et al.Economic Geology 100th Anniversary Volume.Littleton:Society of Economic Geologists: 407-450.
Groves D I, Goldfarb R J, Robert F,et al,2003. Gold deposits in metamorphic belts:Overview of current understanding,outstanding problems,future research,and exploration significance[J].Economic Geology,98:1-29.
Guan Y, Yuan C, Sun M,et al,2014.I-type granitoids in the eastern Yangtze Block:Implications for the Early Paleozoic intracontinental orogeny in South China[J].Lithos,206/207:34-51.
Huang Cheng, Zhang Dehui, He Chengzhong,et al,2014. The wall-rock alteration of the hydrothermal gold deposit and its relationship with gold mineralization[J].Geophysical and Geochemical Exploration,38(2):278-283,288.
Jia Dacheng, Hu Ruizhong, Zhao Junhong,et al,2003. Litho geochemical characteristics of the Mesozoic granitic intrusion from the Wangxiang area in northeastern Hunan Province and its tectonic setting[J].Acta Geologica Sinica,(1):98-103.
Li H, Wu Q H, Evans N J,et al,2018. Geochemistry and geochronology of the Banxi Sb deposit:Implications for fluid origin and the evolution of Sb mineralization in central-western Hunan,South China[J].Gondwana Research,55:112-134.
Li W, Cook N J, Xie G Q,et al,2019. Textures and trace element signatures of pyrite and arsenopyrite from the Gutaishan Au-Sb deposit, South China[J]. Mineralium Deposita,54(4):591-610.
Li W, Cook N J, Xie G Q,et al,2021. Complementary textural, trace element, and isotopic analyses of sulfides constrain ore-forming processes for the slate-hosted Yuhengtang Au deposit,South China[J].Economic Geology,116(8):1825-1848.
Li X C, Fan H R, Santosh M,et al,2013. Hydrothermal alteration associated with Mesozoic granite-hosted gold mineralization at the Sanshandao deposit,Jiaodong gold province,China[J]. Ore Geology Reviews,53:403-421.
Lin Fanyu, Yin Xijie, Huang Wei,et al,2021. Application of micro-XRF technology to rapid and nondestructive detection of inorganic elements in ocean minerals[J].Marine Geology and Quaternary Geology,41(1):223-232.
Liu Q, Shao Y, Chen M,et al,2019. Insights into the genesis of orogenic gold deposits from the Zhengchong gold field,northeastern Hunan Province,China[J].Ore Geology Reviews,105:337-355.
Mao Jingwen, Li Hongyan,1997. Research on genesis of the gold deposits in the Jiangnan terrain[J].Geochimica,(5):71-81.
Neall F B, Phillips G N,1987. Fluid-wall rock interaction in an Archean hydrothermal gold deposit:A thermodynamic model for the Hunt mine,Kambalda[J].Economic Geology,82:1679-1694.
Phillips G N, Evans K A,2004. Role of CO2 in the formation of gold deposits[J].Nature,429:860-863.
Phillips G N, Law J,2000. Witwatersrand goldfields:Geology,genesis and exploration[J].Society for Economic Geologists Review,13:439-500.
Phillips G N, Powell R,1993. Link between gold provinces[J]. Economic Geology,88:1084-1098.
Pirajno F, Bagas L,2002. Gold and silver metallogeny of the South China Fold Belt:A consequence of multiple mineralizing events[J].Ore Geology Reviews,20:109-126.
Sun Sichen, Zhang Liang, Wu Shenggang,et al,2018. Metallogenic mechanism of the Huangjindong gold deposit,Jiangnan Orogenic Belt:Constraints from mineral formation environment and physicochemical conditions of metallogenesis[J].Acta Petrologica Sinica,34(5):1469-1483.
Wang C, Shao Y, Evans N J,et al,2020. Genesis of Zixi gold deposit in Xuefengshan,Jiangnan Orogen (South China):Age,geology and isotopic constraints[J].Ore Geology Reviews,117:103301.
Wang J Q, Shu L S, Santosh M,2016. Petrogenesis and tectonic evolution of Lianyunshan complex,South China:Insights on Neoproterozoic and late Mesozoic tectonic evolution of the central Jiangnan Orogen[J].Gondwana Research,39:114-130.
Wang L X, Ma C Q, Zhang C,et al,2014. Genesis of leucogranite by prolonged fractional crystallization:A case study of the Mufushan complex,South China[J].Lithos,206/207:147-163.
Wen Z, Deng T, Dong G,et al,2016. Study on the characters and rules of the ore-controlling structures of the Wangu gold deposit in northeastern Hunan Province[J].Geotectonica et Metallogenia,40:281-294.
Williams-Jones A E, Bowell R J, Migdisov A A,2009. Gold in solution[J].Elements,5:281-287.
Xi Chaozhuang, Yang Tao, Xia Haodong,et al,2018. Characteristics of trace elements and REE in Huangjindong gold deposit in northeastern Hunan and their geological significance[J].Gold,39(2):17-21.
Xiao Yongjun, Chen Guanghao,2004. Preliminary study on the tectono metallogenic orientation mechanism of the Dadong-Wangu gold deposit zone,northeastern Hunan Province[J].Geotectonica et Metallogenia,(1):38-44.
Xie Xiaomin, Li Li, Yuan Qiuyun,et al,2021. Grain size distribution of organic matter and pyrite in Alum shales characterized by TIMA and its Paleo environmental significance[J].Rock and Mineral Analysis,40(1):50-60.
Xu D, Chi G, Zhang Y,et al,2017. Yanshanian (Late Mesozoic) ore deposits in China—An introduction to the Special Issue[J].Ore Geology Reviews,88:481-490.
Xu D, Deng T, Chi G,et al,2017. Gold mineralization in the Jiangnan orogenic belt of South China:Geological,geochemical and geochronological characteristics,ore deposit-type and geodynamic setting[J].Ore Geology Reviews,88:565-618.
Xu D, Gu X, Li P,et al,2007. Mesoproterozoic—Neoproterozoic transition:Geochemistry,provenance and tectonic setting of clastic sedimentary rocks on the SE margin of the Yangtze Block,South China[J].Journal of Asian Earth Sciences,29:637-650.
Xu Deru, Deng Teng, Dong Guojun,et al,2017. Zircon U-Pb geochronological and geochemical characteristics of the Lianyunshan two-mica monzogranites in northeastern Hunan Province:Implications for petrogenesis and tectonic setting associated with polymetallic mineralization[J].Ear-th Science Frontiers,24(2):104-122.
Zhang L, Groves D I, Yang L Q,et al,2020.Utilization of preexi-sting competent and barren quartz veins as hosts to later oroge-nic gold ores at Huangjindong gold deposit,Jiangnan Orogen,southern China[J].Mineralium Deposita,55:363-380.
Zhang L, Yang L Q, Groves D I,et al,2018. Geological and isotopic constraints on ore genesis,Huangjindong gold deposit,Jiangnan Orogen,southern China[J].Ore Geology Reviews,99:264-281.
Zhang L, Yang L Q, Weinberg R F,et al,2019. Anatomy of a world-class epizonal orogenic-gold system:A holistic thermochronological analysis of the Xincheng gold deposit,Jiaodong Peninsula,eastern China[J].Gondwana Research,70:50-70.
Zhang Ting, Peng Jiantang,2014. Wall-rock alteration and mass balance of Herenping albite-quartz vein-type gold deposit in the western Hunan[J].Journal of Earth Sciences and Environment,36(4):32-44.
Zhong J, Pirajno F, Chen Y J,2017. Epithermal deposits in South China:Geology,geochemistry,geochronology and tectonic setting[J].Gondwana Research,42:193-219.
Zhou Y, Xu D, Dong G,et al,2021. The role of structural reactivation for gold mineralization in northeastern Hunan Province,South China[J].Journal of Structural Geology,145:104306.
Zou S, Zou F, Ning J,et al,2018. A stand-alone Co mineral deposit in northeastern Hunan Province,South China:Its timing,origin of ore fluids and metal Co,and geodynamic setting[J].Ore Geology Reviews,92:42-60.
邓腾,2018. 湘东北地区陆内构造—岩浆活化及其对金成矿作用的控制[D].广州: 中国科学院广州地球化学研究所.
黄诚,张德会,和成忠,等,2014.热液金矿床围岩蚀变特征及其与金矿化的关系[J].物探与化探,38(2):278-283,288.
贾大成,胡瑞忠,赵军红,等,2003.湘东北中生代望湘花岗岩体岩石地球化学特征及其构造环境[J].地质学报, (1):98-103.
林梵宇,尹希杰,黄威,等,2021.利用微区XRF技术的大洋固体矿产成分快速无损检测[J].海洋地质与第四纪地质,41(1):223-232.
毛景文,李红艳,1997.江南古陆某些金矿床成因讨论[J].地球化学,(5):71-81.
孙思辰,张良,吴圣刚,等,2018.江南造山带黄金洞金矿床成矿机制:矿物形成环境与金成矿物理化学条件制约[J].岩石学报,34(5):1469-1483.
息朝庄,杨涛,夏浩东,等,2018.湘东北黄金洞金矿床微量元素、稀土元素特征及其地质意义[J].黄金,39(2):17-21.
肖拥军,陈广浩,2004.湘东北大洞—万古地区金矿构造成矿定位机制的初步研究[J].大地构造与成矿学,(1):38-44.
谢小敏,李利,袁秋云,等,2021.应用TIMA分析技术研究Alum页岩有机质和黄铁矿粒度分布及沉积环境特征[J].岩矿测试,40(1):50-60.
许德如,邓腾,董国军,等,2017.湘东北连云山二云母二长花岗岩的年代学和地球化学特征:对岩浆成因和成矿地球动力学背景的启示[J].地学前缘,24(2):104-122.
张婷,彭建堂,2014.湘西合仁坪钠长石—石英脉型金矿床围岩蚀变及质量平衡[J].地球科学与环境学报,36(4):32-44.
[1] 宋翔宇,张振,王君玉,李荣改. 含金硫化矿碱性氧化提金研究现状与展望[J]. 黄金科学技术, 2020, 28(6): 940-954.
[2] 周振菊,陈衍景,汤好书,吴艳爽,陈正乐. 西昆仑塔什库尔干赞坎铁矿成矿物质来源的锶钕同位素约束[J]. 黄金科学技术, 2018, 26(4): 454-464.
[3] 曲晖, 王佰义, 王建民, 李成禄, 徐国战, 王卓. 土壤地球化学测量在永新金矿勘查中的应用及找矿效果研究[J]. 黄金科学技术, 2018, 26(2): 143-152.
[4] 张磊,佟宇,杨振东,白云龙,刘幸,赵永涛. 辽宁苇子沟地区金铜多金属矿成矿机制及找矿方向[J]. 黄金科学技术, 2017, 25(4): 10-17.
[5] 赵淑芳,刘新会,杨登美. 南秦岭金龙山金矿床金属矿物学研究[J]. 黄金科学技术, 2014, 22(2): 38-45.
[6] 曾兴民. 多硫离子硫化技术及其应用[J]. 黄金科学技术, 2013, 21(5): 157-161.
[7] 张勇,王翠仙,罗学辉,朝银银,徐涛. 内蒙古巴彦温多尔金矿床韧性剪切带特征及成矿机制[J]. 黄金科学技术, 2013, 21(4): 20-25.
[8] 张燕, 汤倩. 剪切带型金矿研究进展——以云南哀牢山金矿带为例[J]. J4, 2011, 19(1): 11-15.
[9] 杨瑞亭, 李志杰. 综合物化探方法在葫芦铜镍硫化物矿床勘探中的应用[J]. J4, 2009, 17(3): 40-43.
[10] 陈海明, 刘智明, 曲晖. 东安金矿床蚀变矿物特征[J]. J4, 2006, 14(4): 14-18.
[11] 刘智明. 东安浅成低温热液型金矿床金的赋存状态[J]. J4, 2005, 13(05): 19-22.
[12] 柴世刚. 河南灵宝金渠金矿区矿床成因及成矿机制探讨[J]. J4, 2004, 12(2): 22-26.
[13] 葛碧洲, 兰新哲, 张聪惠, 宋永辉. 多种含硫阴离子的液相色谱法研究[J]. J4, 1999, 7(2): 36-42.
[14] 秦克章. 陆相火山—斑岩Au、Ag、Pb、Zn、Cu 矿床系统与VHMS 矿床系统对比研究[J]. J4, 1998, 6(3): 6-17.
[15] 胡洁雪, 龚乾. 硫代硫酸盐法处理含铁硫化金精矿的研究[J]. J4, 1992, 0(5): 30-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!