img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (1): 72-84.doi: 10.11872/j.issn.1005-2518.2022.01.160

• 采选技术与矿山管理 • 上一篇    下一篇

迎接深部开采高地温环境的挑战——岩石真三轴试验机地温模拟平台研究

傅璇(),黄麟淇(),陈江湛,吴阳春,李夕兵   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2021-10-29 修回日期:2021-12-22 出版日期:2022-02-28 发布日期:2022-04-25
  • 通讯作者: 黄麟淇 E-mail:fuxuan97@csu.edu.cn;huanglinqi@csu.edu.cn
  • 作者简介:傅璇(1997-),女,福建三明人,硕士研究生,从事深部地下工程灾害防治研究工作。fuxuan97@csu.edu.cn
  • 基金资助:
    国家自然科学基金项目“深部多场耦合岩体致灾能量诱变试验系统”(51927808)

Meeting the Challenge of High Geothermal Ground Temperature Environ-ment in Deep Mining—Research on Geothermal Ground Temperature Simula-tion Platform of Rock True Triaxial Testing Machine

Xuan FU(),Linqi HUANG(),Jiangzhan CHEN,Yangchun WU,Xibing LI   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2021-10-29 Revised:2021-12-22 Online:2022-02-28 Published:2022-04-25
  • Contact: Linqi HUANG E-mail:fuxuan97@csu.edu.cn;huanglinqi@csu.edu.cn

摘要:

为迎接深部开采高地温环境的挑战,提高真三轴试验设备的高地应力—高地温耦合能力,开展了岩石真三轴试验机地温模拟平台的研发工作。通过建立数值模拟(COMSOL)、变异系数法(RSD)与多属性决策问题理想解法(TOPSIS)相结合的真三轴高地应力—高地温耦合加载方案评估体系,对3种加温方案进行综合指标评估和方案优选。为了取得贴近实际情况的最佳试验效果,选取岩石表面加温均匀度、加压杆水冷外侧散热量、岩样平均升温速率、加压板应变值和经济成本作为评估方案优劣的5项基础评价指标。运用COMSOL Multiphysics仿真软件模拟3种加温方案,通过变异系数法,将模拟所得的数据进行客观赋值,并将相应的指标数值代入TOPSIS模型中进行综合评价。结果显示:六面加热棒加温、环状加热器加温和液体传热加温3种方案综合评价指数分别为0.4288、0.9447和0.5532,环状加热器加温的方式与正理想解贴近度达到0.9447,为最优决策。该评估体系将理论方法、数值计算与数值模拟相结合,为寻找最优的真三轴试验设备加温方案提供了可靠的理论依据和试验基础,对当前深部岩石开采所需的高地应力—高地温耦合能力的仪器研究具有指导意义。

关键词: 深部开采环境, 真三轴地温模拟平台, 加温方案, 数值模拟, RSD法, TOPSIS模型

Abstract:

In order to meet the challenge of the high ground temperature environment of deep mining,realize the real simulation of the environment,and improve the high ground stress-high ground temperature coupling capability of the true triaxial test equipment,the research and development of the ground temperature simulation platform of the rock true triaxial test machine has been carried out. The exploration and establishment of three kinds of heating schemes for the ground temperature simulation platform are the six-sided heating rod heating scheme based on solid medium heat transfer,the ring heater heating scheme and the liquid heat transfer heating scheme based on liquid medium heat transfer. Through the establishment of a true triaxial high ground stress-high ground temperature coupled loading program evaluation system combining numerical simulation (COMSOL),coefficient of variation method (RSD) and ideal solution for multi-attribute decision-making problems (TOPSIS),comprehensive indicators for three heating programs evaluation and scheme optimization. In order to obtain the best test results close to reality,the five basic evaluations of the quality of the evaluation plan are the uniformity of heating on the rock surface,the heat dissipation from the outside of the pressurized rod,the average heating rate of the rock sample,the strain value of the pressurized plate and the economic cost index. The COMSOL Multiphysics simulation software was used to simulate three heating schemes. Through the coefficient of variation method,the simulated data were objectively assigned,and the corresponding index values ??were brought into the TOPSIS model for comprehensive evaluation. The evaluation results show that the comprehensive evaluation indexes of the three schemes of six-sided heating rod heating,ring heater heating,and liquid heat transfer heating are 0.4288,0.9447 and 0.5532,respectively. The heating method of the ring heater is consistent with a positive ideal solution. The closeness degree reaches 0.9447,which is the optimal decision after comprehensively considering the five indicators. This evaluation system combines theoretical methods,numerical calculations and numerical simulations,and provides a reliable theoretical basis and experimental basis for finding the optimal heating scheme for true triaxial test equipment. The instrumental research on the coupling capability of ground temperature is of guiding significance.

Key words: deep mining environment, true triaxial ground temperature simulation platform, heating scheme, numerical simulation, RSD method, TOPSIS model

中图分类号: 

  • TD315
Chen B, Ren Q Y, Wang F F, al et,2021. Inversion analysis of in-situ stress field in tunnel fault zone considering high geothermal[J]. Geotechnical and Geological Engineering,39:5007-5019.
Frash LP, Gutierrez M, Hampton J,2014. True-triaxial apparatus for simulation of hydraulically fractured multi-borehole hot dry rock reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences,70:496-506.
Gong Jian, Hu Nailian, Cui Xiang, al et,2014. Prediction of rockburst tendency based on AHP-TOPSIS evaluation model[J]. Chinese Journal of Rock Mechanics and Engineering,33(7):1442-1448.
Hao Zhenxing,2017. Research on Temperature Control System of High Temperature True Three-axis Press Based on Embedded[D]. Taiyuan:Taiyuan University of Technology.
He M C, Wang Q, Wu Q Y,2021. Innovation and future of mining rock mechanics[J].Journal of Rock Mechanics and Ge-otechnical Engineering,13(1):1-21.
He Manchao, Xie Heping, Peng Suping, al et,2009. Research on deep mining rock mass mechanics[C]//Research Progress of Soft Rock Engineering and Deep Disaster Control in China——The 4th Deep Rock Mechanics and Engineering Disaster Control Symposium and China University of Mining and Technology(Beijing) Centennial Anniversary Academic Conference Proceedings.Xuzhou:China University of Mining and Technology: 10-19.
Hu Sherong, Peng Jichao, Huang Can, al et,2011. Current status and progress of research on deep mine mining more than one thousand meters[J].China Mining Industry,20(7):105-110.
Jiang T T, Zhang J H, Wu H,2016. Experimental and numerical study on hydraulic fracture propagation in coalbed methane reservoir[J]. Journal of Natural Gas Science and Engineering,35:455-467.
Li Xibing,2014. Foundation and Application of Rock Dynamics[M]. Beijing:Science Press.
Li Xibing, Gong Fengqiang,2021. Research progress and prospects of rock mechanics in deep mining based on combined dynamic and static loading tests[J]. Journal of China Coal Society,46(3):846-866.
Li Xibing, Gong Fengqiang, Du Kun, al et,2016. Progress report on experimental research of rockburst under high-stress rock mass dynamic disturbance[J]. Science & Technology Innovation Herald,13(15):173.
Li Xibing, Huang Linqi, Zhou Jian, al et,2019. Review and prospect of hard rock mining technology[J]. The Chinese Journal of Nonferrous Metals,29(9):1828-1847.
Li Xibing, Liu Bing,2018. Review and exploration on the status quo of backfill mining in hard rock mines[J].Gold Science and Technology,26(4):492-502.
Li Xibing, Yao Jinrui, Gong Fengqiang,2011. Dynamic problems in deep mining of hard rock metal mines[J].The Chinese Journal of Nonferrous Metals,21(10):2551-2563.
Li Xibing, Zhou Jian, Huang Linqi, al et,2020. Review and pro-spects of China’s gold mining technology[J].Gold,41(9):41-50.
Ma Jianxiong, Xue Linfu, Zhao Jinmin, al et,2019. Numerical simulation of temperature field in in-situ mining of oil shale[J]. Science Technology and Engineering,19(5):94-103.
Ma Xiao, Ma Dongdong, Hu Dawei, al et,2019. Development and application of real-time high-temperature true triaxial test system[J].Chinese Journal of Rock Mechanics and Engineering,38(8):1605-1614.
Nasseri M, Goodfellow S, Lombos L, al et,2014. 3-D transport and acoustic properties of fontainebleau sandstone during true-triaxial deformation experiments[J].International Jou-rnal of Rock Mechanics and Mining Sciences,69:1-18.
Niu Xuechao, Zhang Qingxi, Yue Zhongwen,2013.Current situation and development trend of rock triaxial testing machine[J].Rock and Soil Mechanics,34(2):600-607.
Qin Hong, Zhang Xin, Bai Jingru, al et,2014. Experimental study on temperature distribution in oil shale gas heat carrier dry distillation furnace[J].Chemical Machinery,41(6):727-732.
Ren Aihua,1988. Newly developed 800t high temperature and high pressure servo triaxial rheometer[J]. Chinese Journal of Geophysics,(2):236.
Ren Song, Yang Chunhe, Jiang Deyi, al et,2011. Development and application of high-temperature triaxial salt rock dissolution characteristics testing machine[J]. Chinese Journal of Rock Mechanics and Engineering,30(2):289-295.
Shi Liangqi, Song Ruiqing, Wu Xiuquan,1986.Development of high pressure and temperature triaxial experimental vessels used with either gas or liquid media[J]. Chinese Journal of Rock Mechanics and Engineering,(3):301-308.
Shi Zequan, Zhou Meiqing,1990. Design of 800MPa high temperature and high pressure triaxial chamber[J].Chinese Jou-rnal of Geophysics,(2):202-207.
Wang Yunmin,2011. Opportunities and challenges faced by the metal mining industry and technical countermeasures[J]. Modern Mining,27(1):1-14.
Xie Heping, Gao Feng, Ju Yang,2015. Research and exploration of deep rock mass mechanics[J].Chinese Journal of Rock Mechanics and Engineering,34(11):2161-2178.
Yin Guangzhi, Li Minghui, Xu Jiang, al et,2015. Development and application of a multifunctional true triaxial fluid-solid coupling test system[J]. Chinese Journal of Rock Mechanics and Engineering,34(12):2436-2445.
Zhao Wei, Lin Jian, Wang Shufang, al et,2013. Influence of human activities on groundwater environment based on coefficient variation method[J]. Environmental Science,34(4):1277-1283.
Zhao Yangsheng, Wan Zhijun, Zhang Yuan, al et,2008.Develo-pment of a 20MN servo-controlled high-temperature and high-pressure rock mass triaxial testing machine[J].Chine-se Journal of Rock Mechanics and Engineering,194(1):1-8.
龚剑,胡乃联,崔翔,等,2014.基于AHP-TOPSIS评判模型的岩爆倾向性预测[J].岩石力学与工程学报,33(7):1442-1448.
郝振兴,2017. 基于嵌入式的高温真三轴压力机温度控制系统研究[D]. 太原:太原理工大学.
何满潮,谢和平,彭苏萍,等,2009. 深部开采岩体力学研究[C]//中国软岩工程与深部灾害控制研究进展——第四届深部岩体力学与工程灾害控制学术研讨会暨中国矿业大学(北京)百年校庆学术会议论文集.徐州:中国矿业大学: 10-19.
胡社荣,彭纪超,黄灿,等,2011. 千米以上深矿井开采研究现状与进展[J]. 中国矿业,20(7):105-110.
李夕兵,2014.岩石动力学基础与应用[M].北京:科学出版社.
李夕兵,宫凤强,2021. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望[J]. 煤炭学报,46(3):846-866.
李夕兵,宫凤强,杜坤,等,2016. 高应力岩体动力扰动下发生岩爆的试验研究进展报告[J]. 科技创新导报,13(15):173.
李夕兵,黄麟淇,周健,等,2019. 硬岩矿山开采技术回顾与展望[J]. 中国有色金属学报,29(9):1828-1847.
李夕兵,刘冰,2018.硬岩矿山充填开采现状评述与探索[J].黄金科学技术,26(4):492-502.
李夕兵,姚金蕊,宫凤强,2011. 硬岩金属矿山深部开采中的动力学问题[J].中国有色金属学报,21(10):2551-2563.
李夕兵,周健,黄麟淇,等,2020.中国黄金矿山开采技术回顾与展望[J]. 黄金,41(9):41-50.
马建雄,薛林福,赵金岷,等,2019. 油页岩原位开采温度场的数值模拟[J]. 科学技术与工程,19(5):94-103.
马啸,马东东,胡大伟,等,2019. 实时高温真三轴试验系统的研制与应用[J]. 岩石力学与工程学报,38(8):1605-1614.
牛学超,张庆喜,岳中文,2013.岩石三轴试验机的现状及发展趋势[J].岩土力学,34(2):600-607.
秦宏,张鑫,柏静儒,等,2014. 油页岩气体热载体干馏炉内温度分布的试验研究[J]. 化工机械,41(6):727-732.
任爱华,1988. 新研制的800t高温高压伺服三轴流变仪[J]. 地球物理学报,(2):236.
任松,杨春和,姜德义,等,2011. 高温三轴盐岩溶解特性试验机研制及应用[J]. 岩石力学与工程学报,30(2):289-295.
施良骐,宋瑞卿,吴秀泉,1986.气液两用高温高压岩石三轴实验容器的研制[J].岩石力学与工程学报,(3):301-308.
石泽全,周枚青,1990. 800MPa高温高压三轴室设计研究[J]. 地球物理学报,(2):202-207.
王运敏,2011. 金属矿采矿工业面临的机遇和挑战及技术对策[J]. 现代矿业,27(1):1-14.
谢和平,高峰,鞠杨,2015. 深部岩体力学研究与探索[J]. 岩石力学与工程学报,34(11):2161-2178.
尹光志,李铭辉,许江,等,2015. 多功能真三轴流固耦合试验系统的研制与应用[J]. 岩石力学与工程学报,34(12):2436-2445.
赵微,林健,王树芳,等,2013. 变异系数法评价人类活动对地下水环境的影响[J]. 环境科学,34(4):1277-1283.
赵阳升,万志军,张渊,等,2008. 20MN伺服控制高温高压岩体三轴试验机的研制[J]. 岩石力学与工程学报,194(1):1-8.
[1] 黄丹,陈何,郑志杰. 基于空隙量守恒的覆岩裂隙带发育高度模型[J]. 黄金科学技术, 2021, 29(6): 843-853.
[2] 邓红卫,钟智明,田广林. 高原矿井分段式增氧通风数值模拟研究[J]. 黄金科学技术, 2021, 29(5): 698-708.
[3] 徐路路,张钦礼,冯如. 基于采场结构参数优化后的充填体强度数值模拟[J]. 黄金科学技术, 2021, 29(3): 421-432.
[4] 贾敬锎,黄滚,汪龙,成墙,甄利兵. 单轴压缩试验中减弱端部效应新型方法研究[J]. 黄金科学技术, 2021, 29(3): 382-391.
[5] 黄进,刘科伟,靳绍虎. 高强弹体侵彻白麻花岗岩靶体的数值模拟研究[J]. 黄金科学技术, 2021, 29(3): 411-420.
[6] 王卫华,罗杰,刘田,韩震宇. 节理粗糙度对应力波传播及试样破坏影响的颗粒流模拟[J]. 黄金科学技术, 2021, 29(2): 208-217.
[7] 谢学斌,高山,过江,叶永飞. 地震动荷载下深埋巷道压力拱高度响应规律的数值模拟研究[J]. 黄金科学技术, 2021, 29(2): 226-235.
[8] 金鹏,刘科伟,李旭东,杨家彩. 深部岩体水耦合爆破裂纹扩展数值模拟研究[J]. 黄金科学技术, 2021, 29(1): 108-119.
[9] 胡建华,庞乐,王学梁,郑明华. 基于正交试验的过断层软破段巷道支护参数优化[J]. 黄金科学技术, 2020, 28(6): 859-867.
[10] 王成龙,侯成录,杨尚欢,赵兴东. 千米深井高应力破碎围岩控制技术[J]. 黄金科学技术, 2020, 28(6): 885-893.
[11] 李泽佑, 黄锐, 赵淑琪, 沈学, 吴娥. 高海拔矿山独头巷道通风降尘方法优选[J]. 黄金科学技术, 2020, 28(5): 743-752.
[12] 苏怀斌, 张钦礼, 张德明, 曾长根, 朱晓江. 穰家垅银矿大规模充填采矿采场结构参数优化研究[J]. 黄金科学技术, 2020, 28(4): 550-557.
[13] 贺桂成, 陈科旭, 戴兵, 王程程. 十字交叉裂隙扩展机理试验与数值模拟研究[J]. 黄金科学技术, 2020, 28(4): 509-520.
[14] 寇永渊, 李光, 邹龙, 马凤山, 郭捷. 金川二矿区+1 000 m中段水平矿柱回采方法研究[J]. 黄金科学技术, 2020, 28(3): 353-362.
[15] 于世波, 杨小聪, 原野, 王志修. 深部区域采矿时序的地压调控卸荷效应研究[J]. 黄金科学技术, 2020, 28(3): 345-352.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 谢覃江. 云南省人头箐金矿床地质特征及成因探讨[J]. 黄金科学技术, 0, (): 0 .
[2] 张壮,李文,刘建明,曾庆栋. 大兴安岭中南段银多金属矿床勘查进展与找矿思路[J]. 黄金科学技术, 2016, 24(4): 60 -65 .
[3] 朱学礼,冯涛,柏瑞,宁霄峰,李肖,张子衿. “地质+”多元驱动智慧勘查初步应用[J]. 黄金科学技术, 2017, 25(1): 46 -54 .
[4] 何顺斌,刘杰. 基于谱聚类算法的岩体结构面产状优势分组[J]. 黄金科学技术, 2017, 25(4): 46 -51 .
[5] 殷璐,金哲男,杨洪英*,张勤. 我国黄金资源综合利用现状与展望[J]. 黄金科学技术, 2018, 26(1): 17 -24 .
[6] 曲晖, 王佰义, 王建民, 李成禄, 徐国战, 王卓. 土壤地球化学测量在永新金矿勘查中的应用及找矿效果研究[J]. 黄金科学技术, 2018, 26(2): 143 -152 .
[7] 廖钦桓. 闪速浮选工艺在甘肃某金矿选矿厂的应用[J]. 黄金科学技术, 2016, 24(2): 108 -111 .
[8] 高帅,曾庆栋,于昌明,邢宝山,荆林海,叶杰,范宏瑞,杨奎锋. 遥感及综合物探方法用于山东招远南部隐伏成矿侵入体的空间定位[J]. 黄金科学技术, 2017, 25(5): 1 -10 .
[9] 马凤山,李克蓬,杜云龙,侯成录,李威,张国栋 . 三山岛金矿海底开采F1断裂防突结构可能的破坏形式分析 [J]. 黄金科学技术, 2017, 25(5): 47 -56 .
[10] 彭剑平,沈述保. 绿色矿山建设长效机制与典型案例[J]. 黄金科学技术, 2016, 24(4): 133 -136 .