img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (1): 64-71.doi: 10.11872/j.issn.1005-2518.2022.01.124

• 采选技术与矿山管理 • 上一篇    下一篇

全尾砂物理特性对絮凝沉降性能影响规律的研究

李兆宇1,2(),孙伟1,2(),张盛友1,2,李金鑫1,2   

  1. 1.昆明理工大学国土资源工程学院,云南 昆明 650093
    2.云南省中—德蓝色矿山与特殊地下空间开发利用重点实验室,云南 昆明 650093
  • 收稿日期:2021-09-06 修回日期:2021-11-18 出版日期:2022-02-28 发布日期:2022-04-25
  • 通讯作者: 孙伟 E-mail:845549050@qq.com;kmustsw@qq.com
  • 作者简介:李兆宇(1997-),男,江西南昌人,硕士研究生,从事膏体充填及岩石力学研究工作。845549050@qq.com
  • 基金资助:
    国家自然科学基金项目“动荷载作用下充填体宏细观缺陷结构演化与损伤破坏机理研究”(51964023);云南省基础研究计划项目“全尾砂—冶炼渣复合充填体重金属离子溶出与靶向固化机制”(202101BE070001-038)

Study on the Effect of Physical Properties of Full Tailings on Flocculation and Sedimentation Performance

Zhaoyu LI1,2(),Wei SUN1,2(),Shengyou ZHANG1,2,Jinxin LI1,2   

  1. 1.Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
    2.Yunnan Key Laboratory of Sino-German Blue Mining and Utilization of Special Underground Space, Kunming 650093, Yunnan, China
  • Received:2021-09-06 Revised:2021-11-18 Online:2022-02-28 Published:2022-04-25
  • Contact: Wei SUN E-mail:845549050@qq.com;kmustsw@qq.com

摘要:

随着浅部矿产资源的日益枯竭,矿山开采深度逐渐增加,而深部开采环境非常复杂且开采难度更大,加之我国对环境保护工作的高度重视,充填采矿法逐渐成为我国矿山首选的采矿方法。为研究尾砂物理特性对絮凝沉降性能的影响规律,开展了粒级组成、比重对尾砂沉降效果影响的静态絮凝沉降试验。研究结果表明:尾砂的中值粒径与沉降速度、底流浓度成正相关;-200目粒径含量与沉降速度、底流浓度在一定范围内成负相关;构建了-200目粒径含量、尾砂比重、中值粒径与沉降速度、底流浓度的数学方程,对尾砂浆絮凝沉降速度的影响程度上,-200目粒径含量>中值粒径>尾砂比重;对尾砂底流浓度的影响程度上,中值粒径>-200目粒径含量>尾砂比重。尾砂粒径大小对浓缩效率影响较大,本研究可为全尾砂絮凝沉降效率提升及底流浓度调控提供依据。

关键词: 絮凝沉降, 中值粒径, 尾砂比重, 粒级组成, 底流浓度, 沉降速度, 全尾砂

Abstract:

With the depletion of shallow mineral resources and the implementation of the national environmental protection policy,the filling mining method has gradually become the preferred mining method for major mines.In order to study the influence of the tailings own characteristics on the performance of flocculation and settlement during the filling process,the influence of the tailings own physical characteristics on the settlement effect was investigated by conducting flocculation and settlement experiments on four different tailings at the same feeding concentration,flocculant type and dosage.The experimental results and regression analysis show that the specific gravity,median particle size and -200 mesh particle content of the tailing sand are not mono-tonically correlated with the settling velocity and bottom flow concentration,and there is no simple univariate correlation between them,and the fitted equations are not well fitted by non-linear regression.The median particle size of the tailing sand show a positive correlation with the settling velocity and the bottom flow concentration.The -200 mesh particle content is negatively correlated with the settling velocity and bottom flow concentration in the process of flocculation and settling,and the fit is high,which has a higher degree of influence on the settling effect.The single-factor correlation of specific gravity of tailings,median particle size with settling velocity and bottom flow concentration is low,and the regression equation of these three factors with settling velocity and bottom flow concentration is obtained by multiple linear regression using SPSS software,and the significance of these factors is further analyzed.For the influence degree of flocculation settling velocity of tailings mortar,-200 mesh particle content > median particle size > proportion of the tailings.For the influence degree of tailings bottom flow concentration,median particle size >-200 mesh particle con-tent > proportion of the tailings.

Key words: flocculation sedimentation, median particle size, proportion of the tailings, granular composition, bottom flow concentration, sedimentation velocity, full tailings

中图分类号: 

  • TD853

表1

尾砂物理特性"

尾砂

编号

检测结果
比重/(g·cm-3中值粒径/μm-200目粒径含量/%
1号2.9113.04872.42
2号3.1122.40957.29
3号2.9312.64873.54
4号2.7917.37870.59

图1

尾砂粒级组成"

图2

絮凝剂“架桥”作用原理"

图3

絮凝沉降试验示意图"

图4

固液界面高度(a)和沉降速度(b)随时间的变化规律"

图5

平均沉降速度(a)和底流浓度(b)随尾砂比重的变化规律"

图6

中值粒径对平均沉降速度(a)和底流浓度(b)的影响"

图7

-200目颗粒含量对平均沉降速度(a)和底流浓度(b)的影响"

图8

粒径对沉降效果的影响"

表2

沉降速度影响因素显著性分析"

影响因素显著性
尾砂比重0.893
中值粒径0.859
-200目粒径含量0.386

表3

底流浓度影响因素显著性分析"

影响因素显著性
尾砂比重0.753
中值粒径0.326
-200目粒径含量0.540
Fan Y P, Ma X M, Dong X S, al et,2020,Characterisation of floc size,effective density and sedimentation under various flocculation mechanisms[J].Water Science and Technology:A journal of the International Association on Water Pollution Research,82(7):1261-1271.
Guo Jiabin, Wang Hongjiang, Tian Zhigang, al et,2021.Effect of different types of flocculant on the thickening property of superfine tailings[J].Mining Research and Development,41(4):141-145.
Jiao Huazhe, Wang Hongjiang, Wu Aixiang, al et,2010.Rule and mechanism of flocculation sedimentation of unclassified tailings[J].Journal of University of Science and Technology Beijing,32(6):702-707.
Kang Qian, Wang Yunmin, He Yan, al et,2019.Experimental study on continuous settlement law under solid-liquid two phase coupling conditions of unclassified tailings[J].Gold Science and Technology,27(6):896-902.
Li Jinxin, Sun Wei, Zhang Shengyou, al et,2021.Factors influencing flocculation and sedimentation of full tailings [J].Journal of Kunming University of Science and Technology(Natural Science),46(1):45-53.
Liu Qi, Cen Youhua, Liu Dongrui, al et,2021.Prediction of technical parameters of full tailings thickening based on static settlement test [J].Gold Science and Technology,29(2):266-274.
Liu Qi, Cen Youhua, Tang Mingdong, al et,2021.Influence of different physical properties of tailings on thickening performance[J].Mining Research and Development,41(5):124-130.
Niu Peng, Wang Hongjiang, Wu Aixiang, al et,2019.Static flocculation and sedimentation rule of ultrafine whole tailings and its application in design of vertical sand bin[J].Industrial Minerals & Processing,48(3):35-39,46.
Shi Xiuzhi, Hu Haiyan, Du Xianghong, al et,2010.Experimental study on flocculating sedimentation of tailings slurry in a vertical sand tank[J].Mining and Metallurgical Engineering,30(3):1-3,11.
Sui Can, Wang Xiaojun, Wang Xinmin, al et,2020.Study on the flocculation law and mechanism of APAM unit consumption to different particle size in the flocculation and sedimentation of tailings[J].Mining Research and Development,40(5):67-74.
Sun Hao, Li Maolin, Cui Rui, al et,2021.Influence of different flocculants on settling effect of lead-zinc tailings [J].Conservation and Utilization of Mineral Resources,41(1):66-72.
Wang Guilian,2007.Study on the design of experiments for measuring liquid viscosity by Stokes method [J].Medical Information,(3):408-409.
Wang S, Song X P, Wang X J, al et,2020.Influence of coarse tailings on flocculation settlement[J].International Journal of Minerals,Metallurgy and Materials,27(8):1065-1074.
Wang X M, Zhao B, Zhang Q L, al et,2008.Cemented backfilling technology with unclassified tailings based on vertical sand silo[J].Journal of Central South University of Technology,15(6):801-807.
Wang Xing, Qu Yuanyuan, Hu Weiwei, al et,2008.Experimental research on factors influencing tailing pulp flocculation on settling[J].Metal Mine,37(5):149-151,153.
Wu Aixiang, Zhou Jing, Yin Shenghua, al et,2016.Influence factors on flocculation sedimentation of unclassified tailings[J].The Chinese Journal of Nonferrous Metals,26(2):439-446.
Zhang Meidao, Rao Yunzhang, Xu Wenfeng, al et,2020.Experimental study on static flocculation and settlement of full tailing mortar in a mine[J].Metal Mine,49(12):50-54.
Zheng Bokun, Deng Gaoling, Li Xiangdong,2018.Research on the application of long distance and stable pressure paste filling technology in high and steep mountainous areas [J].Mining Technology,18(2):1-2,14.
Zhu Jianguo, Liu Fuchun, Xiong Youwei, al et,2020.Experimental study on settling characteristics of tail sand with different grain size grading[J].Mining Research and Development,40(5):41-44.
Zhu Z F, Xiong X Z, Liang C H, al et,2018.On the flocculation and settling characteristics of low- and high-concentration sediment suspensions:Effects of particle concentration and salinity conditions[J].Environmental Science and Pollution Research,25(14):14226-14243.
郭佳宾,王洪江,田志刚,等,2021.不同类型絮凝剂对超细尾砂浓密性能的影响[J].矿业研究与开发,41(4):141-145.
焦华喆,王洪江,吴爱祥,等,2010.全尾砂絮凝沉降规律及其机理[J].北京科技大学学报,32(6):702-707.
康虔,王运敏,贺严,等,2019.固液两相耦合条件下全尾砂连续沉降规律研究[J].黄金科学技术,27(6):896-902.
李金鑫,孙伟,张盛友,等,2021.全尾砂絮凝沉降影响因素研究[J].昆明理工大学学报(自然科学版),46(1):45-53.
刘奇,岑佑华,刘东锐,等,2021.基于静态沉降试验的全尾砂浓密技术参数预测[J].黄金科学技术,29(2):266-274.
刘奇,岑佑华,唐鸣东,等,2021.不同尾砂物理性质对尾砂浓密性能的影响[J].矿业研究与开发,41(5):124-130.
牛鹏,王洪江,吴爱祥,等,2019.超细全尾砂静态絮凝沉降规律及其在立式砂仓设计中的应用[J].化工矿物与加工,48(3):35-39,46.
史秀志,胡海燕,杜向红,等,2010.立式砂仓尾砂浆液絮凝沉降试验研究[J].矿冶工程,30(3):1-3,11.
隋璨,王晓军,王新民,等,2020.全尾砂絮凝沉降中APAM单耗对不同粒级颗粒絮凝作用规律及机理研究[J].矿业研究与开发,40(5):67-74.
孙浩,李茂林,崔瑞,等,2021.不同絮凝剂对铅锌尾矿沉降效果的影响[J].矿产保护与利用,41(1):66-72.
王桂连,2007.斯托克斯法测量液体黏度设计实验的研究[J].医学信息,(3):408-409.
王星,瞿圆媛,胡伟伟,等,2008.尾矿浆絮凝沉降影响因素的试验研究[J].金属矿山,37(5):149-151,153.
吴爱祥,周靓,尹升华,等,2016.全尾砂絮凝沉降的影响因素[J].中国有色金属学报,26(2):439-446.
张美道,饶运章,徐文峰,等,2020.某矿全尾砂浆静态絮凝沉降试验研究[J].金属矿山,49(12):50-54.
郑伯坤,邓高岭,李向东,2018.高陡山区长距离稳压膏体充填技术应用研究[J].采矿技术,18(2):1-2,14.
朱建国,刘福春,熊有为,等,2020.不同粒径级配尾砂沉降特性的试验研究[J].矿业研究与开发,40(5):41-44.
[1] 张美道,饶运章,徐文峰,王文涛. 全尾砂膏体充填配比优化正交试验[J]. 黄金科学技术, 2021, 29(5): 740-748.
[2] 刘奇,岑佑华,刘东锐,罗卫兵,徐喜. 基于静态沉降试验的全尾砂浓密技术参数预测[J]. 黄金科学技术, 2021, 29(2): 266-274.
[3] 康虔,王运敏,贺严,薛希龙,张楚旋. 固液两相耦合条件下全尾砂连续沉降规律研究[J]. 黄金科学技术, 2019, 27(6): 896-902.
[4] 焦华喆, 靳翔飞, 陈新明, 杨亦轩, 王金星. 全尾砂重力浓密导水通道分布与细观渗流规律[J]. 黄金科学技术, 2019, 27(5): 731-739.
[5] 江科,康瑞海,姚中亮,彭亮. 全尾砂最佳絮凝沉降浓度及调控方式研究[J]. 黄金科学技术, 2019, 27(3): 440-448.
[6] 徐文峰,饶运章,李尚辉,许威. 含膨润土充填料浆泌水特性分析[J]. 黄金科学技术, 2019, 27(3): 433-439.
[7] 李宗楠,郭利杰,魏晓明,陈鑫政. 尾砂浆干扰絮凝沉降机理研究[J]. 黄金科学技术, 2019, 27(2): 265-270.
[8] 陈鑫政,郭利杰,李文臣,李宗楠. 全尾砂沉降浓缩试验研究[J]. 黄金科学技术, 2019, 27(1): 105-111.
[9] 王新民, 赵茂阳, 荣帅, 王浩, 张云海. APAM对全尾砂胶结充填体早期强度影响研究[J]. 黄金科学技术, 2018, 26(3): 305-311.
[10] 刘娅,丁剑,付国燕,钱鹏,叶树峰. 微细氰化尾矿颗粒絮凝沉降实验研究[J]. 黄金科学技术, 2015, 23(4): 91-96.
[11] 王新民,胡一波,王石,刘吉祥,陈宇,卞继伟. 超细全尾砂充填配比优化正交试验研究[J]. 黄金科学技术, 2015, 23(3): 45-49.
[12] 戴兴国,方鑫,陈增剑,黄毅. 良山铁矿全尾砂胶结充填参数的合理选择[J]. 黄金科学技术, 2015, 23(1): 74-79.
[13] 刘娅,吕翠翠,丁剑,钱鹏,李青春,叶树峰,陈运法. 氰化尾矿的絮凝实验研究[J]. 黄金科学技术, 2013, 21(6): 82-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杜胜江, 温汉捷, 秦朝建, 卢树藩, 燕永锋, 杨光树. 滇东南老君山矿集区三保锰银矿床碳氧同位素特征及其意义[J]. 黄金科学技术, 2018, 26(3): 261 -269 .
[2] 潘彤,王德福. 初论青海省金矿成矿系列[J]. 黄金科学技术, 2018, 26(4): 423 -430 .
[3] 杨龙伟, 杨兴科, 高雅宁, 何虎军, 褚娜娜, 张正民. 南秦岭汉阴县长沟金矿床三维模型与定位预测[J]. 黄金科学技术, 2018, 26(3): 270 -278 .
[4] 杨超,郭利杰,王劼,史采星,许文远. 某金矿大倍线加压充填技术研究与应用[J]. 黄金科学技术, 2019, 27(1): 89 -96 .
[5] 于世波, 杨小聪, 原野, 王志修. 深部区域采矿时序的地压调控卸荷效应研究[J]. 黄金科学技术, 2020, 28(3): 345 -352 .
[6] 毕林,王黎明,段长铭. 矿井环境高精定位技术研究现状与发展[J]. 黄金科学技术, 2021, 29(1): 3 -13 .
[7] 谢玉华,高华,张哲,杨亮,柯新星,刘晓敏,罗建镖,刘琦,许坤林,刘继顺,王智琳,孔华,刘飚. 湖南通道地区金矿床成矿流体特征及成矿物质来源:来自流体包裹体、H-O-S同位素的证据[J]. 黄金科学技术, 2021, 29(1): 74 -89 .
[8] 何建元,李宏业,高谦,尹升华. 采矿废石—尾砂混合骨料在下向分层进路胶结充填采矿中应用的试验研究[J]. 黄金科学技术, 2021, 29(4): 564 -572 .
[9] 江思宏, 张莉莉, 刘翼飞, 李高峰, 季根源. 非洲大陆金矿分布特征与勘查建议[J]. 黄金科学技术, 2020, 28(4): 465 -478 .
[10] 刘永春,王李管,吴家希. 基于LQR-QPSO的地下铲运机控制参数优化研究[J]. 黄金科学技术, 2021, 29(1): 25 -34 .