img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (1): 19-33.doi: 10.11872/j.issn.1005-2518.2022.01.051

• 矿产勘查与资源评价 • 上一篇    下一篇

东昆仑阿斯哈金矿胶状黄铁矿成因及其成矿意义

梁改忠1,2(),杨奎锋1,2,3(),范宏瑞1,2,3,李兴辉1,2,3   

  1. 1.中国科学院地质与地球物理研究所,中国科学院矿产资源研究重点实验室,北京 100029
    2.中国科学院大学地球与行星科学学院,北京 100049
    3.中国科学院地球科学研究院,北京 100029
  • 收稿日期:2021-05-06 修回日期:2021-09-09 出版日期:2022-02-28 发布日期:2022-04-25
  • 通讯作者: 杨奎锋 E-mail:lianggaizhong@mail.iggcas.ac.cn;yangkuifeng@mail.iggcas.ac.cn
  • 作者简介:梁改忠(1992-),男,山西吕梁人,硕士研究生,从事金矿研究工作。lianggaizhong@mail.iggcas.ac.cn
  • 基金资助:
    第二次青藏高原科学考察研究项目(STEP)“稀贵金属(金、镍、钴、铬铁矿、铂族元素)科学考察与远景评估”(2019QZKK0801)

Genesis of Colloidal Pyrite and Its Metallogenic Significance in Asiha Gold Deposit,East Kunlun

Gaizhong LIANG1,2(),Kuifeng YANG1,2,3(),Hongrui FAN1,2,3,Xinghui LI1,2,3   

  1. 1.Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    2.College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
    3.Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China
  • Received:2021-05-06 Revised:2021-09-09 Online:2022-02-28 Published:2022-04-25
  • Contact: Kuifeng YANG E-mail:lianggaizhong@mail.iggcas.ac.cn;yangkuifeng@mail.iggcas.ac.cn

摘要:

东昆仑成矿带沟里金矿区阿斯哈金矿床中的黄铁矿主要分为两类:早期自形结晶黄铁矿和晚期胶状黄铁矿。为了厘清阿斯哈金矿胶状黄铁矿成因及其成矿意义,本文对具有特殊意义的胶状黄铁矿开展原位微量元素分析、面扫分析和原位硫同位素分析。结果表明:胶状黄铁矿富As、Au、Pb和Cu,贫Co和Ni,Co/Ni比值大于10,δ34S值范围变化较窄(+6.1‰~+6.8‰)。结合显微结构,认为胶状黄铁矿为岩浆热液成因,与阿斯哈金矿区内隐伏花岗闪长斑岩体可能存在密切成因联系。迅速沉淀于温度骤降条件下的胶状黄铁矿中的As和Au发生了解耦,微米级粒径黄铁矿为控制固溶体金富集的主导因素。

关键词: 胶状黄铁矿, 原位微区分析, 微量元素, 硫同位素, 阿斯哈金矿, 东昆仑成矿带

Abstract:

The Asiha vein-type gold deposit,located in the Eastern Kunlun orogenic belt,provides an excellent opportunity for deciphering precipitations of metals and origins of orogenic intrusion-related gold systems.Predecessors have proposed that Asiha gold deposit is an orogenic gold deposit or magmatic hydrothermal gold deposit related to intrusion body,and the genesis of the deposit is controversial.Gold precipitation is closely related to arsenic content and vulcanization,and the main precipitation mechanism is not clear.However,pyrite often occurs in many types of gold deposits,which can provide detailed mineralization information in explaining the source of ore-forming materials,the composition of ore-forming fluids and metallogenic physicochemical conditions,while colloidal pyrite with special structure can provide more important mineralization information.Pyrite is an excellent research object for constraining the genesis of ore deposits.There are two types of pyrite in Asiha gold deposit,namely,early euhedral crystalline pyrite and late colloidal pyrite.Through the study of the chemical composition and microstructure of colloidal pyrite,it is found that gold arsenic decoupling occurs in Asha gold deposit,and the gold precipitation is closely related to the particle size of pyrite.In order to clarify the genesis and gold precipitations of Asiha gold deposit,backscatter electron scanning microscope analysis,in-situ trace element analysis,area scan analysis and in-situ sulfur isotope analysis are carried out for colloidal pyrite.Colloidal pyrite is a parallel or irregular concentric ring belt with irregular complex surfaces.The transition between ribbons is a gradual transition.The bands on the strip often have the contraction pattern of the gel,and the width of the strip is 3~200 μm.Under high-power scanning electron microscope (SEM),it shows the aggregation of micron fine particles and dark gray substrate.Colloidal pyrite is rich in As (median of 3 164×10-6),Au (median of 4.15×10-6),Cu (median of 13 070×10-6),Pb (median of 1 157×10-6),Ag (median of 781.2×10-6),Sb (median of 1 668×10-6),but poor Co in (median of 44.48×10-6),Ni (median of 2.96×10-6) and Te (below the detection limit),and the Co/Ni ratio is greater than 10.The area scan shows clear zoning characteristics of As,Au,Co,Cu,Mo,Ag and Bi,and the distribution consistency of gold and arsenic is weak.The δ34S value range of colloidal pyrite(+6.1‰~+6.8‰) is narrow.Combined with the in-situ trace elements,in-situ sulfur isotopes and microstructure of colloidal pyrite,it is considered that the colloidal pyrite is of magmatic hydrothermal origin,which may be a close genetic relationship with the concealed granite porphyry in the Asiha gold deposit.Arsenic and Au in colloidal pyrite precipitated rapidly under the condition of sudden temperature drop are decoupled,and the micron size pyrite is the dominant factor controlling the enrichment of solid solution gold.

Key words: colloidal pyrite, in-situ microanalysis, trace element, sulfur isotope, Asiha gold deposit, East Kunlun metallogenic belt

中图分类号: 

  • P618.51

图1

东昆仑造山带构造简图(a)[据Dong et al.(2018)修改]和阿斯哈金矿地质图(b)1.第四系;2.侏罗系;3.三叠系;4.二叠系;5.石炭系;6.奥陶—志留系;7.印支期花岗岩;8.印支期闪长岩;9.华力西期花岗闪长岩;10.华力西期闪长岩;11.华力西期超基性岩;12.加里东期花岗岩;13.加里东期闪长岩;14.岩脉;15.断层"

图2

阿斯哈金矿床矿体分布图1.第四系;2.花岗闪长岩;3.石英闪长岩;4.片麻岩;5.混合岩;6.Cu-Au矿化石英脉"

图3

阿斯哈金矿不同类型黄铁矿的反射光、背散射电子显微照片和手标本照片(a)反射光下自形粗晶黄铁矿中含包体金;(b)反射光下毒砂中含包体金;(c)背散射照片中自形粗晶黄铁矿与毒砂、黄铜矿共生;(d)含胶状黄铁矿和自形粗晶黄铁矿的手标本;(e)反射光下胶状黄铁矿包裹早期自形结晶黄铁矿;(f)反射光下胶状黄铁矿中微量元素(红色)和硫同位素(黄色点)剥蚀点;(g)背散射照片中胶状黄铁矿特征;Py-早期结晶黄铁矿;Cpy-胶状黄铁矿;Ccp-黄铜矿;Gl-金;Apy-毒砂;Qtz-石英"

图4

高倍背散射电子照片中的胶状黄铁矿"

表1

胶状黄铁矿LA-ICP-MS原位微量元素(10-6)和LA-MC-ICP-MS原位硫同位素(‰)分析结果"

元素19ash30c-119ash30c-219ash30c-319ash30c-419ash30c-5中位数检出限

早期结晶黄铁矿

(Liang et al., 2021)

Co15.2561.5144.4866.8243.7244.480.042.0
Ni0.364.262.963.782.852.960.130.5
Cu15 91816 18913 07012 22111 19713 0700.330.5
Zn36.67191.5127.1269.5116.9127.10.90bdl
As1 3675 5163 1646 4662 9433 1640.292090
Ag882889781630653781.191.00bdl
Sb1 6682 1491 6062 5381 5091 6680.070.2
Te-0.39-0.230.160.43-0.41-0.230.63bdl
Au3.264.604.154.353.164.150.030.1
Pb1 1571 5349081 5727991 1570.080.4
Bi23.55198.1146.5228.3144.61470.030.5
Mo40.44120.379.16156.564.2679.160.04bdl
W0.230.750.441.010.390.440.05bdl
Co/Ni比值4314151815154.0
δ34S值6.36.16.86.66.16.36.4~8.9

图5

胶状黄铁矿中LA-ICP-MS微量元素的变化范围(a)Au/As比值图;(b)微量元素分布图;(c)边—核微量元素变化趋势"

图6

胶状黄铁矿的LA-ICP-MS面扫图"

图7

胶状黄铁矿中δ34S值的变化范围"

Bao Z A, Chen L, Zong C L, al et,2017. Development of pressed sulfide powder tablets for in situ sulfur and lead isotope measurement using LA-MC-ICP-MS[J].International Journal of Mass Spectrometry,421:255-262.
Barbour K M,1961. The Republic of the Sudan:A Regional Geography[M].London:University of London Press.
Belcher R W, Rozendaal A, Przybylowicz W J,2004. Trace element zoning in pyrite determined by PIXE elemental mapping:Evidence for varying ore-fluid composition and electrochemical precipitation of gold at the Spitskop deposit,Saldania Belt,South Africa[J].X-Ray Spectrom,33(3):174-180.
Butler I B, Rickard D,2000. Framboidal pyrite formation via the oxidation of iron (Ⅱ) monosulfide by hydrogen sulphide[J].Geochimica et Cosmochimica Acta,64(15):2665-2672.
Chen J J, Fu L B, Selby D, al et,2020. Multiple episodes of gold mineralization in the East Kunlun orogen,western Central Orogenic Belt,China:Constraints from Re-Os sulfide geochronology[J].Ore Geology Reviews,123:103587.
Chen Jiajie,2018.Paleozoic-Mesozoic Tectono-Magmatic Evolution and Gold Mineralization in Gouli Area,East End of East Kunlun Orogen[D].Wuhan:China University of Geosciences.
Chen L, Yuan H L, Chen K Y, al et,2019. In situ sulfur isotope analysis by laser ablation MC-ICPMS and a case study of the Erlihe Zn-Pb ore deposit,Qinling orogenic belt,Central China[J].Journal of Asian Earth Sciences,176:325-336.
Chen N S, Sun M, Wang Q Y, al et,2007. EMP chemical ages of monazites from central zone of the eastern Kunlun orogen:Records of multi-tectonometamorphic events[J]. Chinese Science Bulletin,52(16):2252-2263.
Chen Youxin, Pei Xianzhi, Li Ruibao, al et,2013. Zircon U-Pb age,geochemical characteristics and tectonic significance of meta-volcanic rocks from Naij Tal Group,east section of East Kunlun[J].Earth Science Frontiers,20(6):240-254.
Chen Youxin, Pei Xianzhi, Li Ruibao, al et,2014.Geochemical characteristics and tectonic significance of meta-sedimentary rocks from Naij Tal group,eastern section of East Kunlun[J].Geoscience,28(3):489-500.
Clark C, Grguric B, Mumm A S,2004. Genetic implications of pyrite chemistry from the Paleoproterozoic Olary Domain and overlying Neoproterozoic Adelaidean sequences,northeastern South Australia[J].Ore Geology Reviews,25(3/4):237-257.
Cline J S, Hofstra A A, Muntean J L, al et,2005. Carlin-type gold deposits in Nevada:Critical geologic characteristics and viable models[C]//Economic Geology 100th Anniversary Volume.Colorado:Society of Economic Geologists: 451-484.
Craig J R, Vokes F M, Solberg T N,1998. Pyrite:physical and chemical textures[J].Mineralium Deposita,34(1):82-101.
Danyushevsky L, Robinson P, Gilbert S, al et,2011. Routnie quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS:Standard development and consideration of matrix effects[J].Geochemistry-Exploration Environment Analysis,11(1):51-60.
Deditius A P, Reich M, Kesler S E, al et,2014. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits[J].Geochimica et Cosmochimica Acta,140:644-670.
Deditius A P, Utsunomiya S, Renock D, al et,2008. A proposed new type of arsenian pyrite:Composition,nanostructure and geological significance[J].Geochimica et Cosmochimica Acta,72:2919-2933.
Dong Y P, He D F, Sun S S, al et,2018. Subduction and accretionary tectonics of the East Kunlun orogen,western segment of the Central China orogenic system[J].Earth-Science Reviews,186:231-261.
Fan Likun, Cai Yanping, Liang Haichuan, al et,2009. Characters and evolution of the geodynamics in the eastern Kunlun[J].Geological Survey and Research,33(3):181-186.
Feng Chengyou, Zhang Dequan, Wang Fuchun, al et,2004. Geochemical study on ore-forming fluid of gold (antimony) deposit in East Kunlun orogenic gold deposit,Qinghai Province[J].Acta Geoscientica Sinica,20(4):949-960.
Feng Shouzhong,2003. The types and major control factors of deposit with by product gold in China[J].Contributions to Geology and Mineral Resources Research,18(3):168-172.
Fougerouse D, Reddy S M, Saxey D W, al et,2016. Nanoscale Au clusters in arsenopyrite controlled by growth rate not concentration:Evidence from atom probe microscopy[J].American Mineralogist,101 (8):1916-1919.
Gopon P, Douglas J O, Auger M A, al et,2019. A nanoscale investigation of Carlin-type gold deposits:An atom-scale elemental and isotopic perspective[J].Economic Geology and the Bulletin of the Society of Economic Geologists,114(6):1123-1133.
He D F, Dong Y P, Liu X M, al et,2016. Tectono-thermal events in East Kunlun,Northern Tibetan Plateau:Evidence from zircon U-Pb geochronology[J].Gondwana Research,30:179-190.
Hofmann A,1988. Chemical differentiation of the Earth:The relationship between mantle,continental crust,and oceanic crust[J].Earth and Planetary Science Letters,90(3):297-314.
Hu S Y, Barnes S J, Glenn A M, al et,2019. Growth history of sphalerite in a modern sea floor hydrothermal chimney revealed by electron backscattered diffraction[J].Economic Geology and the Bulletin of the Society of Economic Geologists,114(1):165-176.
Jiang Chunfa, Yang Jingsui, Feng Binggui,1992. Opening-Closing Tectonics of Kunlun Mountains[M].Beijing:Geological Publishing House.
Keith M, Häckel F, Haase K M, al et,2016. Trace element systematics of pyrite from submarine hydrothermal vents[J].Ore Geology Reviews,72:728-745.
Large R R, Danyushevsky L, Hollit C, al et,2009. Gold and trace element zonation in pyrite using a laser imaging technique:Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits[J].Economic Geology,220(5):635-668.
Li Bile, Shen Xin, Chen Guangjun, al et,2012.Geochemical features of ore-forming fluids and metallogenesis of vein I in Asiha gold ore deposit,Eastern Kunlun,Qinghai province[J].Journal of Jilin University(Earth Science Edition),42(6):1676-1687.
Li Jinchao,2017. Metallogenic Regularity and Metallogenic Prognosis of Gold Deposit in the East Kunlun Orogen,Qinghai Province[D].Xi’an:Chang’an University.
Li X H, Fan H R, Yang K F, al et,2018. Pyrite textures and compositions from the Zhuangzi Au deposit,southeastern Nor-th China Craton:Implication for ore-forming processes[J].Contributions to Mineralogy and Petrology,173(9):73.
Liang G Z, Yang K F, Sun W Q, al et,2021. Multistage ore-forming processes and metal source recorded in texture and composition of pyrite from the Late Triassic Asiha gold deposit, Eastern Kunlun orogenic belt, western China[J]. Journal of Asian Earth Sciences,220:104920.
Liu Y, Hu Z, Gao S, al et,2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology,257(1/2):34-43.
Loftus-Hills G, Solomon M,1967. Cobalt,nickel and selenium in sulphides as indicators of ore genesis[J].Mineralium Deposita,2:228-242.
Madyagan L, Franchini M, Lentz D R, al et,2013. Sulfide composition and isotopic signature of the Altar Cu-Au deposit,Argentina:Constraints on the evolution of the porphyryepithermal system[J].Canadian Mineralogist,51(6):813-840.
Maslennikov V V, Maslennikova S P, Large R R, al et,2009. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic hosted massive sulfide deposit (Southern Urals,Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) [J].Economic Geology,104(8):1111-1141.
Migdisov A A, Zezin D, Williams-Jones A E,2011. An experimental study of Cobalt (Ⅱ) complexation in Cl- and bearing hydrothermal solutions[J].Geochimica et Cosmochimica Acta,75:4065-4079.
Millet M A, Baker J A, Payne C E,2012. Ultra-precise stable Fe isotope measurements by high resolution multiple-collector inductively coupled plasma mass spectrometry with a 57Fe-58Fe double spike[J].Chemical Geology, 304/305:18-25.
Ohmoto H,1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J].Economic Geology, 67(5):551-578.
Palme H, Jones A,2003. Solar System Abundances of the Elements[M]. Alexandria:Treatise on Geochemistry.
Peng H W, Fan H R, Liu X, al et,2021. New insights into the control of visible gold fineness and deposition:A case study of the Sanshandao gold deposit(Jiaodong,China)[J].American Mineralogist,106(1):135-149.
Price B J,1972. Minor Elements in Pyrites from the Smithers Map Area,b.c. and Exploration Applications of Minor Element Studies Doctoral Dissertation[D]. Vancouver: University of British Columbia.
Rajabpour S, Behzadi M, Jiang S Y, al et,2017. Sulfide chemistry and sulfur isotope characteristics of the Cenozoic volcanic-hosted Kuh-Pang copper deposit,Saveh county,northwestern Central Iran[J].Ore Geology Reviews,86:563-583.
Reich M, Deditius A, Chryssoulis S, al et,2013. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system:A SIMS/EMPA trace element study[J].Geochimica et Cosmochimica Acta,104:42-62.
Reich M, Kesler S E, Utsunomiya S, al et,2005. Solubility of gold in arsenian pyrite[J].Geochimica et Cosmochimica Acta,69:2781-2796.
Ren Yunsheng, Liu Liandeng,2006.Hydrothermal colloidal pyrite in Tongling area,Anhui Province,and its metallogenic significance[J].Mineral deposits,25 (Supp.):95-98.
Ren Yunsheng, Liu Liandeng, Wan Xiangzong, al et,2004.Discussion on the metallogenic depth of skarn type gold depo-sits in tongling area,Anhui Province[J].Geotectonica et Metallogenia,28(4):397-403.
Rudnick R L, Gao S,2003. Composition of the continental crust[J].Treatise on Geochemistry,3:659.
Seal R R,2006.Sulfur isotope geochemistry of sulfide minerals[J].Reviews in Mineralogy and Geochemistry,61(1):633-677.
Simon G, Huang H, Penner-Hahn J E, al et,1999. Oxidation state of gold and arsenic in gold-bearing arsenian pyrite[J].American Mineralogist,84(7/8):1071-1079.
Tang Yongcheng, Wu Yanchang, Chu Guozheng, al et,1998.The Geology of Copper Gold Polymetallic Deposit in the Yanjiang Area,Anhui Province[M].Beijing:Geological Publishing House.
Thomas H V, Large R R, Bull S W, al et,2011. Pyrite and pyrrhotite textures and composition in sediments,laminated quartz veins,and reefs at Bendigo gold mine,Australia:insights for ore genesis[J].Economic Geology,106(1):1-31.
Widler A M, Seward T M,2002. The adsorption of gold(Ⅰ) hydrosulphide complexes by iron sulphide surfaces[J].Geochimica et Cosmochimica Acta,66:383-402.
Wu Y F, Evans K, Hu S Y, al et,2021. Decoupling of Au and As during rapid pyrite crystallization[J].Geology,49(7):827-831.
Wu Y F, Fougerouse D, Evans K, al et,2019. Gold,arsenic,and copper zoning in pyrite:A record of fluid chemistry and growth kinetics[J].Geology,47:641-644.
Xiao Ye, Feng Chengyou, Li Daxin, al et,2014. Chronology and fluid inclusions of the Guoluolongwa gold deposit in Qinghai Province[J].Acta Geologica Sinica,88(5):895-902.
Xie Qiaoqin, Chen Tianhu, Fan Ziliang, al et,2014. Morphological characteristics and genesis of colloform pyrite in Xinqiao Fe-S deposit,Tongling,Anhui Province[J].Scientia Sinica Terrae,44(12):2665-2674.
Xu Liang, Xie Qiaoqin, Zhou Yuefei, al et,2019.Mineralogical characteristics of colloform pyrite from Tongguanshan ore field and its implications for mineralization of the stratabound sulfide deposit in Tongling mineralization cluster,Anhui Province[J].Acta Petrologica Sinica,35(12):3721-3733.
Xue Y, Campbell I, Ireland T R, al et,2013. No mass-independent sulfur isotope fractionation in auriferous fluids supports a magmatic origin for Archean gold deposits[J].Geology,41:791-794.
Zhao H X, Frimmel H E, Jiang S Y, al et,2011. LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district,China:Implications for ore genesis[J].Ore Geology Reviews,43:142-153.
Zheng Jiankang,1992. Evolution of regional tectonics in East Kunlun [J].Qinghai Geology,(1):15-25.
陈加杰,2018.东昆仑造山带东端沟里地区构造岩浆演化与金成矿[D].武汉:中国地质大学.
陈有炘,裴先治,李瑞保,等,2013.东昆仑东段纳赤台岩群变火山岩锆石U-Pb年龄、地球化学特征及其构造意义[J].地学前缘,20(6):240-254.
陈有炘,裴先治,李瑞保,等,2014.东昆仑东段纳赤台岩群变沉积岩地球化学特征及构造意义[J].现代地质,28(3):489-500.
范丽琨,蔡岩萍,梁海川,等,2009.东昆仑地质构造及地球动力学演化特征[J].地质调查与研究,33(3):181-186.
丰成友,张德全,王富春,等,2004.青海东昆仑复合造山过程及典型造山型金矿地质[J].地球学报,20(4):949-960.
冯守忠,2003.中国伴生金矿床的类型及主要控矿因素[J].地质找矿论丛,18(3):168-172.
姜春发,杨经绥,冯秉贵,1992.昆仑开合构造[M].北京:地质出版社.
李碧乐,沈鑫,陈广俊,等,2012.青海东昆仑阿斯哈金矿Ⅰ号脉成矿流体地球化学特征和矿床成因[J].吉林大学学报(地球科学版),42(6):1676-1687.
李金超,2017.青海东昆仑地区金矿成矿规律及成矿预测[D].西安:长安大学.
任云生,刘连登,2006.铜陵地区热液成因胶状黄铁矿及其成矿意义[J].矿床地质,25(增):95-98.
任云生,刘连登,万相宗,等,2004.铜陵地区矽卡岩型独立金矿成矿深度探讨[J].大地构造与成矿学,28(4):397-403.
唐永成,吴言昌,储国正,等,1998.安徽沿江地区铜金多金属矿床地质[M].北京:地质出版社.
肖晔,丰成友,李大新,等,2014.青海省果洛龙洼金矿区年代学研究与流体包裹体特征[J].地质学报,88(5):895-902.
谢巧勤,陈天虎,范子良,等,2014.铜陵新桥硫铁矿床中胶状黄铁矿微尺度观察及其成因探讨[J].中国科学:地球科学,44(12):2665-2674.
徐亮,谢巧勤,周跃飞,等,2019.安徽铜陵矿集区铜官山矿田胶状黄铁矿矿物学特征及其对成矿作用的制约[J].岩石学报,35(12):3721-3733.
郑健康,1992.东昆仑区域构造的发展演化[J].青海地质,(1):15-25.
[1] 迟晓鹏,许佳妍,衷水平,陈秀华. 微合金化金基材料的研究进展[J]. 黄金科学技术, 2022, 30(1): 141-150.
[2] 陈玉民, 张华锋, 张聪颖, 胡换龙, 王昭坤, 曾庆栋, 范宏瑞. 黄铁矿标型特征对胶东三山岛金矿深部矿化的启示[J]. 黄金科学技术, 2019, 27(5): 637-647.
[3] 辛杰,密文天,关瑜晴,席忠,张雪松. 内蒙古额济纳旗辉森乌拉西金矿成矿特征及成矿模式分析[J]. 黄金科学技术, 2018, 26(6): 718-728.
[4] 邱宏喜,付桂花,谢璐,张汝生. 绿色化学法在金矿地质样品分析中的应用研究[J]. 黄金科学技术, 2015, 23(3): 77-82.
[5] 李逸凡,李洪奎,汤启云,禚传源,耿科,梁太涛. 山东旧店金矿黄铁矿标型特征及其地质意义[J]. 黄金科学技术, 2015, 23(2): 45-50.
[6] 卢财. 青海抗得弄舍金多金属矿床金矿石特征及金矿物赋存状态研究[J]. 黄金科学技术, 2014, 22(3): 48-53.
[7] 吕平,孙亮亮,李翾,刘博,郝适合,孙岩,李淑芳,曹振帅. 内蒙古秦家沟多金属矿区岩石地球化学特征及找矿方向[J]. 黄金科学技术, 2013, 21(3): 38-42.
[8] 吕喜旺,史文胜,刘新会,高景刚. 陕西金龙山锑金矿床地球化学特征及成因意义[J]. J4, 2012, 20(2): 1-7.
[9] 银剑钊. 冀西北地区主要金矿床硫同位素组成特征研究[J]. J4, 1994, 2(3): 33-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李克蓬,马凤山,郭捷,卢蓉,张洪训,李威. 三山岛海底金矿开采充填体与围岩变形规律的数值模拟[J]. 黄金科学技术, 2016, 24(4): 73 -80 .
[2] 宋国政,闫春明,曹佳,郭志峰,鲍中义,刘国栋,李山,范家盟,刘彩杰. 胶东焦家成矿带超千米深部金矿勘查突破及意义——以纱岭矿区为例[J]. 黄金科学技术, 2017, 25(3): 19 -27 .
[3] 丁剑锋. 某金矿矿仓治理研究[J]. 黄金科学技术, 2017, 25(4): 52 -57 .
[4] 陈桥,杨洪英,陈贵民,佟琳琳,牛会群. 尼尔森重选在我国石英脉型金矿选矿工艺中的应用[J]. 黄金科学技术, 2017, 25(5): 73 -79 .
[5] 单召勇,周发军,朱宗波,殷晓斌. 火试金富集—电感耦合等离子体发射光谱法测定载金炭中金和银[J]. 黄金科学技术, 2017, 25(6): 108 -113 .
[6] 王进, 宫凤强. 红砂岩单轴压缩试验的率效应研究[J]. 黄金科学技术, 2018, 26(1): 56 -63 .
[7] 林格, 宫凤强. 不同受力维度下红砂岩失稳评判指标研究[J]. 黄金科学技术, 2018, 26(2): 195 -202 .
[8] 盛建龙, 翟明洋. 基于随机响应面法的金鸡岭岩质边坡可靠度分析及抽样方法对比[J]. 黄金科学技术, 2018, 26(3): 297 -304 .
[9] 卢富然, 陈建宏. 基于AHP和熵权TOPSIS模型的岩爆预测方法[J]. 黄金科学技术, 2018, 26(3): 365 -371 .
[10] 谢敏雄,李政要,林属勇,迟晓鹏,亓传铎. 提高选矿厂磨矿系统效能的技术改造及应用研究[J]. 黄金科学技术, 2012, 20(6): 65 -68 .