img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (4): 620-628.doi: 10.11872/j.issn.1005-2518.2021.04.170

• 采选技术与矿山管理 • 上一篇    

基于VR技术的矿山冒顶片帮事故教学培训

聂振宇1,2(),周科平1,2(),梁志鹏1,2   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.中南大学高海拔寒区采矿工程技术研究中心,湖南 长沙 410083
  • 收稿日期:2020-09-24 修回日期:2021-03-30 出版日期:2021-08-31 发布日期:2021-10-08
  • 通讯作者: 周科平 E-mail:nzy2785738607@163.com;kpzhou@vip.163.com
  • 作者简介:聂振宇(1996-),男,安徽安庆人,硕士研究生,从事矿山VR与安全管理研究工作。nzy2785738607@163.com
  • 基金资助:
    紫金矿业大陆黄金获批4 000 t/d技改项目;生产计划许可

Teaching and Training of Mine Roof Fall Accident Based on VR Technology

Zhenyu NIE1,2(),Keping ZHOU1,2(),Zhipeng LIANG1,2   

  1. 1.School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
    2.Research Center for Mining Engineering and Technology in Cold Regions,Central South University,Changsha 410083,Hunan,China
  • Received:2020-09-24 Revised:2021-03-30 Online:2021-08-31 Published:2021-10-08
  • Contact: Keping ZHOU E-mail:nzy2785738607@163.com;kpzhou@vip.163.com

摘要:

为了提高非煤矿山冒顶片帮VR培训效率,基于Unity3D、3DMax和Visual Studio 2019软件开发了包括预培训、隐患岩块识别培训和灾害现场逃生培训3个模块的矿山冒顶片帮事故教学培训平台。该平台采用虚拟教练进行示范性教学,指导受训者识别、清理隐患岩块和完成灾害现场逃生,并将虚拟教练培训与传统UI文字培训的效果进行对比,对受训者进行灾害现场逃生测试,完成VR虚拟教练培训平台的效果评估。结果表明:采用虚拟教练培训和UI文字培训的受训者的逃生平均用时分别为192.9 s和238.1 s,后者比前者多45.2 s;一周后重复测试结果,采用虚拟教练培训和UI文字培训的受训者平均用时分别为224.7 s(同比增加16.5%)和290.9 s(同比增加22.2%),后者比前者多66.2 s。前者逃生用时同比增加更少,表明基于VR技术的非煤矿山冒顶片帮教学培训平台可以促进受训者对培训内容保持更长久的记忆力,且整体培训效率更高,可有效提高受训者的安全意识和应急反应能力,具有良好的推广应用价值。

关键词: 金属矿山, 冒顶片帮, 岩石巷道, VR建模, 路线规划, 安全培训

Abstract:

In order to improve the efficiency of VR training for non-coal mine roof fall,based on Unity3D,3DMax and Visual Studio 2019 software,a mine roof fall accident teaching and training platform has been developed including three modules:Pre-training,hidden rock recognition training and disaster site escape training.The platform uses 3DMax modeling software and Unity3D engine to complete the mining VR environment modeling,through the HTC VIVE equipment to complete the interaction between trainees and the mine virtual environment,using virtual coaches for demonstration teaching.Firstly,train the trainees through the mine knowledge question bank to improve the trainees’ cognition level of the mine,and then use the virtual coach to guide the trainee to identify and clear the hidden rock blocks and escape from the disaster site.The comparison of the training effect of the virtual coach and the traditional UI text was carry out,and the trainees will be tested on the disaster scene and the effect evaluation of the VR virtual coach training platform will be completed.The results showed that the average time of escape for trainees trained by virtual coach was 192.9 s,and the average time for trainees trained by UI text was 238.1 s.The latter was 45.2 s longer than the former.The test were repeated one week later. The average time of the trainees who trained by virtual coach was 224.7 s,and the average time of the trainees who used UI text training was 290.9 s.The latter was 66.2 s longer than the former.At the same time,compare to the first test,the escape time of trainees using virtual coach training increased by 16.5%,while the escape time of trainees using UI text training increased by 22.2%.The test results show that the VR technology-based non-coal mine roof fall teaching and training platform can promote the trainees to maintain a longer-term memory of the training content,and the overall training efficiency is higher than UI text teaching,which can effectively improve the trainees’ safety awareness and emergency response capabilities.Interviews with trainees show that the use of virtual coach training can better guide trainees’ attention,create an atmosphere of real-person teaching,and have good promotion and application value.

Key words: metal mine, roof fall, rock roadway, VR modeling, route planning, safety training

中图分类号: 

  • TP391.9

图1

矿山模型效果图"

表1

基于VR技术的矿山冒顶片帮事故演练应用平台整体架构"

模块内容功能
预培训模块应用平台简介,受训者注册登录,对矿山内容的初步教学帮助受训者熟悉应用平台,提高其对矿山的认知水平
隐患岩块识别培训模块虚拟教练陪同受训者熟悉灾害演化规律隐患岩块识别和清理培训,沉浸性教学
灾害现场逃生培训模块虚拟教练传授逃生技巧,受训者体验岩块坍塌现场提高受训者的灾害现场逃离能力

图2

基于VR技术的矿山冒顶片帮事故演练应用平台运行路线"

图3

松散岩块迹象"

图4

灾害现场逃生流程图"

图5

灾害发生时受训者逃生示意图"

图6

2种培训方式比较"

图7

评估试验现场"

Andrzej G,Jarosław J,2015.Virtual Reality-based pilot training for underground coal miners[J].Safety Science,72:310-314.
Cao L J,Lin J,Li N,2019.A virtual reality based study of indoor fire evacuation after active or passive spatia exploration[J].Computer in Human Behavior,90:37-45.
Chen Jianhong,Qin Caoyuan,Deng Dongsheng,2017.Risk assessment of bedded rock roadway roof fall based on AHP and matter-element TOPSIS method[J].Gold Science and Technology,25(1):55-60.
Chen Zhiding,Mei Liping,2020.Design of virtual real interaction system of hydraulic turbine based on digital twin technology[J].Water Resources and Power,38(9):167-170.
Hou Jianming,Yang Junyan,2018.Virtual simulation training system of mine rescue based on virtual reality technology[J].Mining Safety & Environmental Protection,45(5):47-50.
Huang Fakai,Cai Yongshun,Zhang Yang,al et,2019.Establishment and application of ground pressure monitoring system during the 30# orebody mining in Huangshan copper-nickel mine[J].Nonferrous Metals(Mining Section),71(2):71-75.
Huang Xiaoyan,Wang Yongsong,2020.Application of VR technology in mine safety training[J].Modern Mining,36(1):207-208.
Liu J P,Xu X D,2019.Analysis of rock mass stability based on mining-induced seismicity:A case study at the Hongtoushan copper mine in China[J].Rock Mechanics and Rock Engineering,52:265-276.
Liu Xiong,Li Haiyang,Jiang Xugang,2018.Design and implementation of mine rescue medical emergency training system based on 3D virtual simulation[J].Mining Safety & Environmental Protection,45(1):47-51.
Mo Chao,Chen Xingming,Jia Da,al et,2020.Similar experimental study on roof caving shock vibration rules in mining process[J].Metal Mine,49(8):49-54.
Roupe M,Bosch P,Johansson M,2014.Interactive navigation interface for Virtual Reality using the human body[J].Computers,Environment and Urban Systems,43:42-50.
Sayali J,Michael H,Robert W,al et,2020.Implementing Virtual Reality technology for safety training in the precast/ prestressed concrete industry[J].Applied Ergonomics,90:103-286.
Shiva P,Pascal P,Stephen P,al et,2018.A qualitative evaluation of the role of virtual reality as a safety training tool for the mining industry[J].Intersections in Simulation and Gaming,10711:188-200.
State Administration of Work Safety,2018.2017 National Non-Coal Mine Production Safety Accident Statistical Analysis Report[R].Beijing:State Administration of Work Safety.
Suh Y S,2014.Development of educational software for beam loading analysis using pen-based user interfaces[J].Journal of Computational Design and Engineering,1(1):67-77.
Sun C Y,Xu D Q,Daria K,2017.A “Bounded Adoption” strategy and its performance evaluation of virtual reality technologies applied in online architectural education[C]//Proceedings of the 22nd International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA).Hong Kong:The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA):43-52.
Wan Xin,2017.Research on Key Technologies of Building Trusted Virtual Private Datacenter for Cloud Computing[D].Wuhan:Huazhong University of Science and Technology.
Wang Cixiao,Li He,Shang Junjie,2017.Application and development prospect of educational games based on virtual reality and augmented reality[J].China Educational Technology,(8):99-107.
Wang Jing,Liu Peizheng,Zhang Peng,al et,2019.Development of virtual mine simulation based on Unity3D software[J].Modern Mining,35(5):36-40.
Wang Peng,2020.Discussion of big data platform construction for safety management and control of smart mine[J].Coal Engineering,52(8):154-158.
Xie Jiacheng,Wang Xuewen,Li Xiang,al et,2019.Research status and prospect of virtual reality technology in field of coal mine[J].Coal Science and Technology,47(3):53-59.
Zhang Eryang,Chen Jianhong,2017.Design and implementation of virtual mine roaming system based on Surpac and unreal engine[J].Gold Science and Technology,25(4):93-98.
陈建宏,覃曹原,邓东升,2017.基于AHP和物元TOPSIS法的层状岩体巷道冒顶风险评价[J].黄金科学技术,25(1):55-60.
陈志鼎,梅李萍,2020.基于数字孪生技术的水轮机虚实交互系统设计[J].水电能源科学,38(9):167-170.
国家安全生产监督管理总局,2018.2017年全国非煤矿山生产安全事故统计分析报告[R].北京:国家安全生产监督管理总局.
侯建明,杨俊燕,2018.基于虚拟现实技术开发的矿山救援虚拟仿真演练系统[J].矿业安全与环保,45(5):47-50.
黄发凯,蔡永顺,张洋,等,2019.黄山铜镍矿30~#矿体开采过程中地压监测系统的建立与应用[J].有色金属 (矿山部分),71(2):71-75.
黄小燕,王永松,2020.VR技术在矿山安全培训中的应用[J].现代矿业,36(1):207-208.
刘雄,李海洋,蒋旭刚,2018.基于3D虚拟仿真技术的矿山救援医疗急救培训系统设计与实现[J].矿业安全与环保,45(1):47-51.
莫超,陈星明,贾达,等,2020.矿山开采过程中顶板冒落冲击振动规律相似试验研究[J].金属矿山,49(8):49-54.
万鑫,2017.云计算环境下可信虚拟数据中心构建及其关键技术研究[D].武汉:华中科技大学.
王辞晓,李贺,尚俊杰,2017.基于虚拟现实和增强现实的教育游戏应用及发展前景[J].中国电化教育,(8):99-107.
王靖,刘培正,张鹏,等,2019.Unity3D软件下的虚拟矿山仿真开发[J].现代矿业,35(5):36-40.
王鹏,2020.智慧矿山安全管控大数据平台建设探讨[J].煤炭工程,52(8):154-158.
谢嘉成,王学文,李祥,等,2019.虚拟现实技术在煤矿领域的研究现状及展望[J].煤炭科学技术,47(3):53-59.
张二洋,陈建宏,2017.基于Surpac矿山设计软件及虚幻引擎实现的矿山虚拟现实漫游系统[J].黄金科学技术,25(4):93-98.
[1] 史秀志,丁春胜,秦亚光. 金属矿山安全文化对员工安全行为的作用机理研究[J]. 黄金科学技术, 2021, 29(4): 593-601.
[2] 王利鹏,闫放,李孜军,王方. 高海拔地区矿井风机状态动态评估[J]. 黄金科学技术, 2020, 28(6): 930-939.
[3] 王猛, 史秀志, 张舒. 面向产能优化的地下金属矿山安全保障条件评价研究[J]. 黄金科学技术, 2020, 28(5): 753-760.
[4] 李蓉蓉,李孜军,黄义龙,赵淑琪. 基于ANP的高海拔矿山掘进工作面通风方式优选[J]. 黄金科学技术, 2020, 28(2): 301-308.
[5] 程力,刘焕新,朱明德,吴钦正. 金属矿山地下采空区问题研究现状与展望[J]. 黄金科学技术, 2020, 28(1): 70-81.
[6] 代转,罗周全,秦亚光,文磊,丁春胜,董喆喆. 地下金属矿山广义安全管理模型构建及评价[J]. 黄金科学技术, 2019, 27(6): 920-930.
[7] 金家聪,陈庆发. 协同采矿方法的创新思维与创新技法[J]. 黄金科学技术, 2019, 27(5): 712-721.
[8] 曹家源,马凤山,郭捷,张国栋,李兆平. 海底倾斜矿体开采沉陷预测研究[J]. 黄金科学技术, 2019, 27(4): 522-529.
[9] 卢富然, 陈建宏. 基于AHP和熵权TOPSIS模型的岩爆预测方法[J]. 黄金科学技术, 2018, 26(3): 365-371.
[10] 丁剑锋. 某金矿矿仓治理研究[J]. 黄金科学技术, 2017, 25(4): 52-57.
[11] 尹土兵,王品,张鸣鲁. 基于AHP及模糊综合评判的地下金属矿山安全分析与评价[J]. 黄金科学技术, 2015, 23(3): 60-66.
[12] 郑亚鹏. 浅析金属矿山主井涌水治理方法[J]. J4, 2011, 19(5): 59-61.
[13] 郎雅平,张智斌,姜浩刚. 建设工程审计在金属矿山的应用[J]. J4, 2011, 19(5): 69-71.
[14] 樊满华. 深井开采通风技术[J]. J4, 2001, 9(6): 36-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!