img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (4): 612-619.doi: 10.11872/j.issn.1005-2518.2021.04.006

• 采选技术与矿山管理 • 上一篇    

基于DEM的露天矿坑坡面顶底线自动提取方法研究

时天东(),毕林()   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2020-12-26 修回日期:2021-03-08 出版日期:2021-08-31 发布日期:2021-10-08
  • 通讯作者: 毕林 E-mail:18373153616@163.com;Mr.BiLin@163.com
  • 作者简介:时天东(1996-),男,辽宁辽阳人,硕士研究生,从事数字矿山等方面的研究工作。18373153616@163.com
  • 基金资助:
    国家自然科学基金项目“基于深度学习和距离场的复杂金属矿体三维建模技术研究”(41572317)

Research on Automatic Extraction Method of Top and Bottom Line of Open-Pit Slope Based on DEM

Tiandong SHI(),Lin BI()   

  1. School of Resources and Safety Engineering,Center South University,Changsha 410083,Hunan,China
  • Received:2020-12-26 Revised:2021-03-08 Online:2021-08-31 Published:2021-10-08
  • Contact: Lin BI E-mail:18373153616@163.com;Mr.BiLin@163.com

摘要:

针对露天矿坑坡面顶底线传统提取方法存在的低效率问题,提出了一种从露天矿坑DEM(数字高程模型,Digital Elevation Model)三维模型中自动提取坡顶底线的方法。首先对原始三维模型数据进行双边滤波预处理,进行去噪并保留特征点;其次根据高程值的标准差设定阈值后将DEM三维模型转化为灰度图像;最后采用梯度运算进行边缘检测,同时设计一个基于八邻域的搜索算法,将边缘像素按顺序连接成完整的台阶线。试验结果表明:自动化方法与传统人工提取方法相比,在保证提取精度的条件下,极大地提高了工作效率,最重要的是实现了提取过程自动化。该方法同样适用于DEM三维模型的地形特征线提取。

关键词: 数字矿山, 露天矿坡面顶底线提取, 数字高程模型, 边缘检测, 地形特征提取, 八邻域边缘跟踪

Abstract:

The slope top and bottom line plays an important role in open-pit mine mining design, production planning,calculation of stripping volume,road network planning,etc.Traditional extraction methods require the use of total stations and other equipment to rely on manual extraction,which is inefficient.In order to solve the problem of low efficiency of the traditional method of manually extracting the slope top and bottom line from the open-pit mine 3D model,a method of automatically extracting the slope top and bottom line from the open-pit mine DEM (Digital Elevation Model) 3D model was studied.The first step of the method is to pre-process the elevation data with up-sampling and bilateral filtering.The second step is to set a threshold,then according to the different elevation values of different regions in the DEM 3D model,different regions are converted into grayscale images with different pixel values.The last step is to perform gradient operation on the gray image,extract the edge pixels in the image,combine with an improved Zhang-Suen algorithm to extract the skeleton of the edge lines,and design a search algorithm based on eight neighborhoods to order the edge pixels and connect them into a complete contour line,and use the Douglas-Peucker algorithm for thinning to get the final step line.The experiment used the measured three-dimensional model data of an open-pit mine for testing.With the aid of a three-dimensional visualization software platform,the extracted step line is superimposed with the three-dimensional model of the pit,visually analyzed and compared,and the accuracy of the extracted results is judged.The visualization results show that compared with the traditional manual extraction method,the automation method greatly improves the work efficiency under the condition of ensuring the extraction accuracy,and most importantly realizes the automation of the extraction process.This method is also applicable to the terrain features of the DEM 3D model line extraction.

Key words: digital mine, extraction of top and bottom line of open pit slope, digital elevation model, edge detection, terrain feature extraction, eight neighborhood edge tracking

中图分类号: 

  • TD176

图1

基于DEM的坡面顶底线自动提取处理流程图"

图2

图像分割处理注:图(a)中不同颜色代表不同的高程值;图(b)中黑色区域代表倾斜坡面,白色区域代表台阶平面"

图3

边缘检测图注:图中白色线条代表对灰度图像进行梯度运算后得到的边缘线,即台阶线的位置"

图4

三类点示意图"

图5

连接算法流程图"

图6

Douglas-Peucker算法流程图"

图7

坡面顶底线处理过程与结果注:图(a)中不同颜色代表不同的高程值;图(b)中白色和黑色区域分别代表坡面和平面;图(c)中黑色线条代表初步提取出的边坡线;图(d)中红色和白色线条分别代表坡顶线和坡底线"

图8

自动化方法提取的坡面顶底线与三维模型叠加对比注:红色和白色线条分别代表提取出的坡顶线和坡底线;红色线条越贴近坡顶,白色线条越贴近坡底,代表结果越准确"

Chen Huawei,Yuan Xiaocui,Wu Lushen,al et,2019.Automatic point cloud feature-line extraction algorithm based on curvature-mutation analysis[J].Optics and Precision Engineering,27(5):1218-1228.
Chen W,Sui L C,Xu Z C,al et,2012.Improved Zhang-Suen thinning algorithm in binary line drawing applications[C]//International Conference on Systems and Informatics(ICSAI2012).Yantai:IEEE:1947-1950.
Cheng X L,Cheng X J,Li Q,al et,2018.Automatic registration of terrestrial and airborne point clouds using building outline features[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,11(2):628-638.
Fuentes I O H,Bravo-Zanoguera M E,Yanez G G,2009.FPGA implementation of the bilinear interpolation algorithm for image demosaicking[C]//International Conference on Ele-ctrical,Communications,and Computers.Cholula,Puebla:IEEE:25-28.
Kang X,Li J,Fan X,2018.Line feature extraction from RGB laser point cloud[C]//International Congress on Image and Signal Processing,BioMedical Engineering and Informatics (CISP-BMEI).Beijing:IEEE:1-5.
Kang Z Z,Zhong R F,Wu A,al et,2016.An Efficient planar feature fitting method using point cloud simplification and threshold-independent baysac[J].IEEE Geoscience and Remote Sensing Letters,13(12):1842-1846.
Kim H,Liu B,Myung H,2017.Road-feature extraction using point cloud and 3D LiDAR sensor for vehicle localization[C]//International Conference on Ubiquitous Robots and Ambient Intelligence (URAI).Jeju:IEEE:891-892.
Li Guangjin,Yang Tao,2019.A guided point cloud filtering algorithm combined with Gaussian statistics[J].Manufacturing Automation,41(4):80-84.
Liu Lijun,Liu Jiping,Zhou Yuanying,al et,2003.A study of automatic vecror system about topographic map based on mathematical morphology[J].Application Research of Co-mputers,(2):83-85.
Ma Xianming,Li Yongshu,Xie Jiali,2017.Experiment and analysis of point cloud denoising using bilateral filtering method[J].Bulletin of Surveying and Mapping,(2):87-89.
Sun Chao,Tan Zhenghua,2019.Optimal selection of the final boundary of open-pit mine under multi-factor conditions[J].Nonferrous Metals Engineering,9(5):72-80.
Wang Qing,Gu Xiaowei,Xu Xiaochuan,al et,2014.Holistic optimization of production planning elements and its application for open-pit mine[J].Journal of Northeastern University(Nature Science),35(12):1796-1800.
Wang S M,Chen Y M,Liu Y F,al et,2015.The extraction of feature points from DEM geographic data in cloud computing environment[C]//International Conference on Geoinforma-tics.Wuhan:IEEE:1-5.
Wu Qunyong,Wu Zufei,Zhang Liangpan,2019.GPS trajectory agglomeration and refined road network extraction[J].Acta Geodaetica et Cartographica Sinica,48(4):502-511.
Yu J,Chen G,Zhang X,al et,2013.An improved Douglas-Peucker algorithm aimed at simplifying natural shoreline into direction-line[C]//21st International Conference on Geoinformatics.Kaifeng:IEEE:1-5.
Yuan Ruidong,Yang Xinfeng,Wang Lei,al et,2018.Application of automatic generation method of open-pit characteristic line based on point cloud data[J].Modern Mining,34(10):168-170.
Zhang Y Y,Jing X J,Wang X Y,2009.An approach to improve the ZS thinning algorithm[C]// International Conference on Network Infrastructure and Digital Content.Beijing:IEEE:750-753.
Zhong Baojiang,Lu Zhifang,Ji Jiahuan,2016.Review on image interpolation techniques[J].Journal of Data Acquisition and Processing,31(6):1083-1096.
Zhu Haibin,Wang Yan,Li Yamei,2018.Surveying and mapping of open-pit mining area using unmanned aerial vehicle[J].Coal Engineering,50(10):162-166.
Zhu Qing,Zhao Jie,Zhong Zheng,al et,2004.The extraction of topographic patterns based on regular grid DEMs[J].Acta Geodaetica et Cartographica Sinica,(1):77-82.
陈华伟,袁小翠,吴禄慎,等,2019.基于曲率突变分析的点云特征线自动提取[J].光学精密工程,27(5):1218-1228.
李广金,杨涛,2019.一种结合高斯统计的点云引导滤波算法[J].制造业自动化,41(4):80-84.
刘利军,刘吉平,周远英,等,2003.基于数学形态学的地形图自动矢量化研究[J].计算机应用研究,(2):83-85.
马先明,李永树,谢嘉丽,2017.利用双边滤波法进行点云去噪的试验与分析[J].测绘通报,(2):87-89.
孙超,谭正华,2019.多因素条件下的露天矿最终境界优选[J].有色金属工程,9(5):72-80.
王青,顾晓薇,胥孝川,等,2014.露天矿生产规划要素整体优化方法及其应用[J].东北大学学报(自然科学版),35(12):1796-1800.
邬群勇,吴祖飞,张良盼,2019.出租车GPS轨迹集聚和精细化路网提取[J].测绘学报,48(4):502-511.
袁睿栋,杨新锋,王磊,等,2018.基于点云数据的露天矿坑特征线自动生成方法的应用[J].现代矿业,34(10):168-170.
钟宝江,陆志芳,季家欢,2016.图像插值技术综述[J].数据采集与处理,31(6):1083-1096.
朱海斌,王妍,李亚梅,2018.基于无人机的露天矿区测绘研究[J].煤炭工程,50(10):162-166.
朱庆,赵杰,钟正,等,2004.基于规则格网DEM的地形特征提取算法[J].测绘学报,(1):77-82.
[1] 银开州,杨兆林,徐彬. 我国矿业企业三维矿业软件普及的管理制度创新[J]. 黄金科学技术, 2018, 26(1): 98-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!