img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (3): 411-420.doi: 10.11872/j.issn.1005-2518.2021.03.007

• 采选技术与矿山管理 • 上一篇    

高强弹体侵彻白麻花岗岩靶体的数值模拟研究

黄进(),刘科伟(),靳绍虎   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2020-12-27 修回日期:2021-03-12 出版日期:2021-06-30 发布日期:2021-07-14
  • 通讯作者: 刘科伟 E-mail:hj_changsha@csu.edu.cn;kewei_liu@126.com
  • 作者简介:黄进(1996-),男,广西贵港人,硕士研究生,从事岩土工程方面的研究工作。hj_changsha@csu.edu.cn
  • 基金资助:
    湖南省自然科学基金项目“爆破荷载下应力波空间变化特性与结构响应机理研究”(2018JJ3656)

Numerical Simulation Study of High-strength Projectile Penetrating White Granite Target

Jin HUANG(),Kewei LIU(),Shaohu JIN   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2020-12-27 Revised:2021-03-12 Online:2021-06-30 Published:2021-07-14
  • Contact: Kewei LIU E-mail:hj_changsha@csu.edu.cn;kewei_liu@126.com

摘要:

为了研究白麻花岗岩在高强度弹体中高速侵彻条件下的力学损伤响应,运用显式动力学有限元分析软件LS-DYNA,应用经SHPB试验验证的HJC材料模型,开展了弹头形状系数为3、直径为?20 mm、长径比为6的刚性弹体以不同初速度侵彻白麻花岗岩靶体的一系列数值模拟研究。同时,针对传统有限元方法难以解决材料大变形导致的网格畸变等问题,采用SPH-FEM耦合方法对靶体进行建模。通过改变弹体配置,研究了不同弹头形状对弹体侵彻性能的影响。模拟结果表明:SPH-FEM方法可以有效模拟岩石靶体受高速冲击的力学损伤响应。由不同撞击速度与侵彻深度的关系得到了有关白麻花岗岩侵彻深度的经验公式,其中侵彻深度与撞击速度呈正比,经验公式可用于相似强度岩体的侵彻深度预测。当初速度为50,100,150,200,250,300 m/s时,平头弹侵彻深度分别为卵形弹侵彻深度的16.7%、27.8%、35.1%、32.1%、36.1%和40.5%,平头弹的侵彻性能远低于卵形弹,且侵彻损伤区域较小。

关键词: 岩石力学, 数值模拟, 力学损伤, 侵彻性能, 经验公式, SPH-FEM耦合方法

Abstract:

It is of great significance to investigate the penetration effect of high strength projectile on rock mass for the development of rock breaking technology in mine drilling.The penetration process is a process with large deformation of material.It is difficult for traditional finite element method to solve the problem with large deformation,which will lead to mesh distortion and calculation disruption.In order to obtain the damage responses of white granite under the condition of high speed penetration,the HJC material model was employed to model the white granite target and the projectile was assumed to be rigid.The HJC model was calibrated by the SHPB test data and the results show that the HJC model is capable to model the mechanical behavior of white granite under high strain rate conditions.The nonlinear finite element analysis software LS-DYNA was utilized and an SPH-FEM coupled method was developed to overcome the penetration problem with large deformation of granite target.A series of numerical simulation of projectile impacting white granite target with different velocity were carried out.The projectile is with diameter of 20 mm,CRH of 3 and length-diameter ratio of 6.The simulation results show that the SPH-FEM method can effectively simulate the mechanical damage response of rock target subjected to high speed impact.Based on the relationship between different impact velocities and penetration depth,an empirical formula for penetration depth of white granite is obtained,which can be used to predict the penetration depth of rock mass with similar strength.Finally,the effects of different nose shapes on penetration performance was studied. The results show that the penetration performance of flat-nose projectile is much lower than that of ogive-nose projectile,and the penetration damage area is smaller.The penetration depths of flat-nose projectile at initial velocity of 50,100,150,200,250 and 300 m/s are 16.7%,27.8%,35.1%,32.1%,36.1%,40.5% of the penetration depths of ogive-nose projectile,respectively.

Key words: rock mechanics, numerical simulation, mechanical damage, penetration performance, empirical formula, SPH-FEM coupling method

中图分类号: 

  • TJ410

图1

Φ50 mm×50 mm白麻花岗岩试样"

表1

白麻花岗岩HJC模型参数取值"

参数名称数值参数名称数值
密度ρ0/(kg·m-32 607锁定压力Pl/GPa3.47
准静态单轴抗压强度fc/MPa89.4锁定体积应变μl0.02
归一化内聚强度A0.3压实压力Pc/MPa29.8
归一化硬化压力B2.0压实体积应变μc2.1E-3
压力硬化指数N0.79压力常数K1/GPa116
应变率系数C0.003 6压力常数K2/GPa-243
最大拉伸静水压力T/MPa4.56压力常数K3/GPa506
剪切模量G/GPa9.88损伤常数D10.04
归一化最大强度Smax7损伤常数D21.0
断裂塑性应变EFMIN0.01准静态应变率EPS01.0

表2

白麻花岗岩不同应变率下的压缩强度"

应变率压缩强度/MPa等效强度
10-489.41.00
121131.01.47
140139.01.56
155143.01.60

图2

SHPB试验模型局部示意图"

图3

入射杆、透射杆应变信号(a)和试样应力平衡图(b)"

图4

不同应变率下室内试验与数值模拟获得的真实应力—应变曲线的比较"

图5

计算模型网格布置示意图"

图6

测点布置示意图"

图7

靶体历史压力云图及各测点处峰值压力衰减规律"

图8

初速度为250 m/s时的靶体历史损伤云图"

图9

初速度为500 m/s时的靶体历史损伤云图"

图10

白麻花岗岩模拟侵彻深度与经验公式的比较"

图11

相同动能平头弹与卵形弹侵彻深度的对比"

图12

初速度为250 m/s的平头弹与卵形弹对靶体最终损伤区域对比"

Berard R S,1975.Deep penetration theory for homogeneous and layered targets[R].Vicksburg:Army Engineer Waterways Experiment Station.
Berard R S,1977.Empirical analysis of projectile penetration in rock[R].Vicksburg:Army Engineer Waterways Experiment Station.
Berard R S,1978.Depth and motion prediction for earth penetrators[R].Vicksburg:Army Engineer Waterways Experiment Station.
Deng Yongjun,Chen Xiaowei,Yao Yong,2020.Study on the cavity expansion response of the concrete target under penetration[J]. Scientia Sinica(Physica,Mechanica & Astronomica),50(2):34-51.
Fang Qin,Kong Xiangzhen,Wu Hao,al et,2014.Determination of Holmquist-Johnson-Cook constitutive model parameters of rock[J].Engineering Mechanics,31(3):197-204.
Forrestal M J,Altman B S,Cargile J D,al et,1994.An empirical equation for penetration depth of ogive-nose projectiles into concrete targets[J].International Journal of Impact Engineering,15(4): 395-405.
Forrestal M J,Luk V K,1992.Penetration into soil targets[J].International Journal of Impact Engineering,12(3):427-444.
Frew D J,Forrestal M J,Hanchak S J,2000.Penetration experiments with limestone targets and ogive-nose steel projectiles[J].Journal of Applied Mechanics,67(4):841-845.
Holmquist T J,Johnson G R,Cook W H,1993.A computational constitutive model for concrete subjected to large strains,high strain rates,and high pressures[C]//The International Symposium on Ballistics.Arlington:American Defense Preparedness Association:591-600.
Kuang Yuchun,Zhu Zhipu,Jiang Haijun,al et,2012. The experimental study and numerical simulation of single-particle impacting rock[J].Acta Petrolei Sinica,33(6):1059-1063.
Liu G R,Liu M B, 2005.Smoothed Particle Hydrodynamics: A Meshfree Particle Method[M].Han Xu,Yang Gang,Qiang Hongfu,transl.Changsha:Hunan University Press.
Livingston C W,Smith F L,1951.Bomb penetration projectile[R].Golden:Colorado School of Mines Research Foundation.
Ren G M,Wu H,Fang Q,al et,2017.Parameters of Holmquist-Johnson-Cook model for high-strength concrete-like materials under projectile impact[J].International Journal of Protective Structures,8(3):352-367.
Shen Jun,Liu Ruizhao,Yang Jianchao,al et,2008.Experimental and theoretical studies of projectile penetrating rocks[J].Chinese Journal of Rock Mechanics and Engineering,27(5):946-952.
Wang Mingyang,Deng Hongjian,Qian Qihu,2005. Study on problems of near cavity of penetration and explosion in rock[J]. Chinese Journal of Rock Mechanics and Engineering,24(16):62-66.
Wang Mingyang,Li Jie,Li Haibo,al et,2018.Dynamic compression behavior of rock and simulation of damage effects of hypervelocity kinetic energy bomb[J].Explosion and Shock Waves,38(6):1200-1217.
Wang Mingyang,Rong Xiaoli,Qian Qihu,al et,2003.Calculation principle for penetration and perforation of projectiles into rock[J]. Chinese Journal of Rock Mechanics and Engineering,22(11):1811-1816.
Wen Lei,Li Xibing,Wu Qiuhong,al et,2016.Study on parameters of Holmquist-Johnson-Cook model for granite porphyry[J].Chinese Journal of Computational Mechanics,33(5):725-731.
Young C W,1967.The development of empirical equation for prediction depth of an earth penetrating projectiles[R].Albuquerque:Sandia National Laboratories.
Young C W,1997.Penetration equations[R].Albuquerque:Sandia National Laboratories.
Zhang Dezhi,Lin Junde,Tang Rundi,al et,2006.An empirical equation for penetration depth of projectiles into high-strength rock targets[J].Acta Armamentarii,27(1):15-18.
Zhang Dezhi,Zhang Xiangrong,Lin Junde,al et,2005.Penetration experiments for normal impact into granite targets with high-strength steel projectile[J].Chinese Journal of Rock Mechanics and Engineering,24(9):1612-1618.
Zhao Jian,Wu Xianzhu,Han Liexiang,al et,2013.Study on new progress of particle impact drilling technology and rock breaking numerical simulation[J].Drilling & Production Technology,36(1):1-5,7.
Н Ханукаев A,1980.Physical process of mineral rock mass blasting[M].Liu Dianzhong,transl.Beijing:Metallurgical Industry Press.
邓勇军,陈小伟,姚勇,2020.钢筋混凝土靶侵彻过程中空腔膨胀响应分区研究[J].中国科学(物理学 力学 天文学),50(2):34-51.
方秦,孔祥振,吴昊,等,2014.岩石Holmquist-Johnson-Cook模型参数的确定方法[J].工程力学,31(3):197-204.
哈努卡耶夫A H,1980.矿岩爆破物理过程[M].刘殿中,译.北京:冶金工业出版社.
况雨春,朱志镨,蒋海军,等,2012.单粒子冲击破岩实验与数值模拟[J].石油学报,33(6):1059-1063.
Liu G R,Liu M B,2005.光滑粒子流体动力学:一种无网格粒子法[M].韩旭,杨刚,强洪夫,译.长沙:湖南大学出版社.
沈俊,刘瑞朝,杨建超,等,2008.弹体侵彻岩体效应试验与理论研究[J].岩石力学与工程学报,27(5):946-952.
王明洋,邓宏见,钱七虎,2005.岩石中侵彻与爆炸作用的近区问题研究[J].岩石力学与工程学报, 24(16):62-66.
王明洋,李杰,李海波,等,2018.岩石的动态压缩行为与超高速动能弹毁伤效应计算[J].爆炸与冲击,38(6):1200-1217.
王明洋,戎晓力,钱七虎,等,2003.弹体在岩石中侵彻与贯穿计算原理[J].岩石力学与工程学报,22(11):1811-1816.
闻磊,李夕兵,吴秋红,等,2016.花岗斑岩Holmquist-Johnson-Cook本构模型参数研究[J].计算力学学报,33(5):725-731.
张德志,林俊德,唐润棣,等,2006.高强度岩石侵彻经验公式[J].兵工学报,27(1):15-18.
张德志,张向荣,林俊德,等,2005.高强钢弹对花岗岩正侵彻的实验研究[J].岩石力学与工程学报,24(9):1612-1618.
赵健,伍贤柱,韩烈祥,等,2013.粒子钻井技术新进展与破岩数值模拟研究[J].钻采工艺,36(1):1-5,7.
[1] 贾敬锎,黄滚,汪龙,成墙,甄利兵. 单轴压缩试验中减弱端部效应新型方法研究[J]. 黄金科学技术, 2021, 29(3): 382-391.
[2] 胡建华,董喆喆,马少维,秦亚光,徐晓,代转. 应力—渗流耦合作用下损伤岩石渗流特性[J]. 黄金科学技术, 2021, 29(3): 355-363.
[3] 王卫华,罗杰,刘田,韩震宇. 节理粗糙度对应力波传播及试样破坏影响的颗粒流模拟[J]. 黄金科学技术, 2021, 29(2): 208-217.
[4] 邓红卫,田广林. 基于CiteSpace可视化分析下2013~2020年冻融岩石力学热点研究探析[J]. 黄金科学技术, 2021, 29(2): 275-286.
[5] 谢学斌,高山,过江,叶永飞. 地震动荷载下深埋巷道压力拱高度响应规律的数值模拟研究[J]. 黄金科学技术, 2021, 29(2): 226-235.
[6] 金鹏,刘科伟,李旭东,杨家彩. 深部岩体水耦合爆破裂纹扩展数值模拟研究[J]. 黄金科学技术, 2021, 29(1): 108-119.
[7] 胡建华,庞乐,王学梁,郑明华. 基于正交试验的过断层软破段巷道支护参数优化[J]. 黄金科学技术, 2020, 28(6): 859-867.
[8] 王成龙,侯成录,杨尚欢,赵兴东. 千米深井高应力破碎围岩控制技术[J]. 黄金科学技术, 2020, 28(6): 885-893.
[9] 李泽佑, 黄锐, 赵淑琪, 沈学, 吴娥. 高海拔矿山独头巷道通风降尘方法优选[J]. 黄金科学技术, 2020, 28(5): 743-752.
[10] 苏怀斌, 张钦礼, 张德明, 曾长根, 朱晓江. 穰家垅银矿大规模充填采矿采场结构参数优化研究[J]. 黄金科学技术, 2020, 28(4): 550-557.
[11] 贺桂成, 陈科旭, 戴兵, 王程程. 十字交叉裂隙扩展机理试验与数值模拟研究[J]. 黄金科学技术, 2020, 28(4): 509-520.
[12] 寇永渊, 李光, 邹龙, 马凤山, 郭捷. 金川二矿区+1 000 m中段水平矿柱回采方法研究[J]. 黄金科学技术, 2020, 28(3): 353-362.
[13] 于世波, 杨小聪, 原野, 王志修. 深部区域采矿时序的地压调控卸荷效应研究[J]. 黄金科学技术, 2020, 28(3): 345-352.
[14] 聂兴信, 甘泉, 高建, 冯珊珊. 协同理念下岩金矿脉群连续回采顶板安全跨度研究[J]. 黄金科学技术, 2020, 28(3): 337-344.
[15] 黄锐,吴娥,吴林. 海拔高度对矿井巷道火灾烟气蔓延规律的影响研究[J]. 黄金科学技术, 2020, 28(2): 293-300.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!