img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (2): 236-244.doi: 10.11872/j.issn.1005-2518.2021.02.123

• 采选技术与矿山管理 • 上一篇    

三维激光扫描技术在地下巷道岩体结构面识别的应用

李杰林1(),杨承业1,彭朝智2,周科平1,刘锐凯1,3   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.云南锡业股份有限公司卡房分公司,云南 个旧 661000
    3.天河道云(北京)科技有限公司,北京 100176
  • 收稿日期:2020-07-10 修回日期:2020-10-14 出版日期:2021-04-30 发布日期:2021-05-28
  • 作者简介:李杰林(1982-),男,湖南宁远人,副教授,从事金属矿山开采、采空区处理及矿山岩石力学等研究工作。lijielin@163.com
  • 基金资助:
    中南大学研究生自主探索创新项目“基于三维激光扫描点云数据的岩体工程结构体智能识别方法研究”(2020zzts713);金属矿山安全与健康国家重点实验室开放课题“深部高应力巷道围岩结构面与危险块体自动识别方法研究”(2020-JSKSSYS-06)

Application of 3D Laser Scanning Technology to Identification of Rock Mass Structural Plane in Roadway of Underground Mine

Jielin LI1(),Chengye YANG1,Chaozhi PENG2,Keping ZHOU1,Ruikai LIU1,3   

  1. 1.School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
    2.Kafang Branch Co. ,Ltd. ,Yunnan Tin Group,Gejiu 661000,Yunnan,China
    3.Tianhe Daoyun (Beijing) Technology Co. ,Ltd. ,Beijing 100176,China
  • Received:2020-07-10 Revised:2020-10-14 Online:2021-04-30 Published:2021-05-28

摘要:

为了精确获取地下巷道的结构面信息,基于三维激光扫描技术,开展地下矿山巷道岩体结构面探测及识别研究。阐述了三维激光扫描系统及其原理、点云数据收集与处理、结构面信息提取的工作流程,并在云南锡业股份有限公司卡房分公司大白岩区域Ⅰ-51#矿群的1 430 m、1 440 m和1 450 m水平主巷道开展了三维激光扫描与结构面信息提取,最后将传统测量手段与三维激光扫描测量方式所获取的结构面数据进行对比分析。结果表明:在地下矿山巷道中,相比传统测量手段,三维激光扫描测量方式所获取的结构面数据更丰富、全面且准确。三维激光扫描技术可为地下矿山巷道岩体结构面工程调查提供一种高效、精确的测量手段。

关键词: 地下矿山, 岩体结构, 三维激光扫描技术, 点云数据, 结构面测量

Abstract:

In the mining process of underground mines,the work of engineering geological investigation of the roadway is the necessarily for the rock mass stability evaluation. Through the mapped geometric parameters of the structural plane,a computer program was used to establish a three-dimensional model of the structural plane and the underground roadway to analyze the structural characteristics of rock mass. However,due to the complex rock mass conditions of the underground roadway,the limited exposure and variability of rock face orientation in roadways must be taken into account. Traditional methods for the mapping of structural planes such as scan-line mapping and window mapping are restricted by the complex environment of underground engineering that cannot be obtained accurate data. This would result in insufficient quantity and poor quality of the obtained structural plane data,which makes it impossible to accurately analyze the structural characteristics of rock mass in underground roadway. In order to accurately obtain the structural plane information of the underground roadway,3D laser scanning technology was used to research on the detection and identification of rock mass structural planes in underground mine. The work flow of the 3D laser scanning system and its principle,point cloud data processing,and structure plane information extraction was explained. Then,the 3D laser scanning and structural plane information extraction were carried out at the roadways of 1 430 m level,1 440 m level and 1 450 m level of the Dabaiyan area Ⅰ-51# ore cluster of Kafang Branch of Yunnan Tin Co.,Ltd. Finally,the structural plane data obtained by the traditional measurement methods and the 3D laser scanning measurement were compared and analyzed. The results show that the structural plane data obtained by the 3D laser scanning measurement method in underground mine is more abundant,comprehensive and accurate than traditional measurement methods. Using the characteristics of fast 3D laser scanning operation speed and wide scanning range can greatly reduce the working time of surveying personnel in the harsh environment of underground roadway,thereby improving the work efficiency of surveying personnel and ensuring work safety. In addition,the virtual point cloud data of the structural plane obtained by the 3D laser scanning can be directly generated by the post-processing software to directly generate the 3D model of the structural plane,thereby quickly interacting with other rock mass structure analysis software,reducing repeated modeling steps.3D laser scanning technology can provide an efficient method for the engineering geological investigation of rock mass structural plane in underground mine.

Key words: underground mine, rock mass structure, 3D laser scanning technology, point cloud data, structural plane measurement

中图分类号: 

  • P585.2

图1

三维激光扫描系统(a)及其原理(b)"

图2

点云数据采集与处理流程"

图3

结构面识别与几何信息提取(a)、(c)、(e)为巷道近景影像;(b)、(d)、(f)为巷道点云模型"

图4

Ⅰ-51#矿群及巷道模型"

图5

三维激光扫描仪架设站点示意图"

图6

1 430 m水平巷道点云模型(a)和三维重构模型(b)"

图7

1 430 m水平巷道结构面统计分组"

表1

优势结构面统计"

监测位置结构面组倾向/(°)倾角/(°)迹长/m间距/m

1 430 m水平

巷道

SET1323800.991.37
SET236311.312.48
SET326760.914.23
SET4230770.944.93

1 440 m水平

巷道

SET1172421.130.47
SET2300790.880.98

1 450 m水平

巷道

SET1147851.161.02
SET2211830.682.87

图8

巷道与结构面三维耦合模型(a)巷道外部;(b)巷道内部"

图9

传统的工程地质调查作业"

图10

传统测线法所获取的结构面数据"

Barla G,Barla M,2000.Continuum and discontinuum modelling in tunnel engineering[J]. The Mining-Geological-Petroleum Engineering Bulletin,12:45-57.
Chen Na,2018.The Structural Information and Deformation Monitoring of Rock Slope Based on 3D Laser Scanning Technology[D].Wuhan:Wuhan University.
Chen S W,Walske M L,Davies I J,2018.Rapid mapping and analysing rock mass discontinuities with 3D terrestrial laser scanning in the underground excavation[J].International Journal of Rock Mechanics and Mining Sciences,110(1):28-35.
Dong Xiujun,Huang Runqiu,2006.Application of 3D laser scanning technology in geological survey of high and steep slopes[J].Chinese Journal of Rock Mechanics and Engineering,25(Supp.2):3629-3635.
Fekete S,Diederichs M,2013.Integration of three-dimensional laser scanning with discontinuum modelling for stability analysis of tunnels in blocky rockmasses[J].International Journal of Rock Mechanics and Mining Sciences,57(1):11-23.
Ferrero A M,Forlani G,Roncella R,al et,2009.Advanced geostructural survey methods applied to rock mass characterization[J].Rock Mechanics and Rock Engineering,42(4):631-665.
Ge Y F,Tang H M,Xia D,2018.Automated measurements of discontinuity geometric properties from a 3D-point cloud based on a modified region growing algorithm[J].Engineering Geology,242:44-54.
Ge Yunfeng,Tang Huiming,Li Wei,al et,2016.Evaluation for deposit areas of rock avalanche based on features of rock mass structure[J].Earth Science,41(9):1583-1592.
Ge Yunfeng,Xia Ding,Tang Huiming,al et,2017.Intelligent identification and extraction of geometric properties of rock discontinuities based on terrestrial laser scanning[J].Chinese Journal of Rock Mechanics and Engineering,36(12):3050-3059.
He Bingshun,Ding Liuqian,Sun Ping,2007.Application of three-dimensional laser scanning system in the identification of rock mass structural plane[J].Journal of China Institute of Water Resources and Hydropower Research,5(1):45-47.
Jing Hongdi,Li Yuanhui,Zhang Zhong,al et,2015.Extraction of rock mass structural plane information based on 3D laser scanning[J].Journal of Northeastern University (Natural Science Edition),36(2):280-283.
Lato M J,Diederichs M S,Hutchinson D J,al et,2009.Optimization of LiDAR scanning and processing for automated structural evaluation of discontinuities in rock masses[J].International Journal of Rock Mechanics and Mining Sciences,46(1):194-199.
Lato M J,Diederichs M S,Hutchinson D J,2010.Bias correction for view-limited lidar scanning of rock outcrops for structural characterization[J].Rock Mechanics and Rock Engineering,43(5):615-628.
Li X J,Chen Z Y,Chen J Q,al et,2019.Automatic characterization of rock mass discontinuities using 3D point clouds[J].Engineering Geology,259(2):1-16.
Liu Changjun,Ding Liuqian,Sun Dongya,2011.Fully automatic fuzzy cluster analysis and geometric information acquisition of rock mass structural plane based on laser point cloud data[J].Chinese Journal of Rock Mechanics and Engineering,30(2):358-364.
Lu Peiqing,Tang Chao,2020.Application of mobile 3D laser scanning technology in deformation monitoring of subway tunnels[J].Surveying and Mapping Bulletin,14(5):155-160.
Otoo J N,Maerz N H,Li X,al et,2013.Verification of a 3-D lidar viewer for discontinuity orientations[J].Rock Mechanics and Rock Engineering,46(3):543-554.
Shi Genhua,1981.Geometric method of rock mass stability analysis[J].Chinese Science,(4):487-495.
Song Jie,Hu Hui,Azzam R,2013.Finite element analysis of jointed rock slope based on LiDAR technology [J].Journal of Rock Mechanics and Engineering,32(Supp.2):3973-3977.
Sturzenegger M,Stead D,2009.Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts[J].Engineering Geology,106(3):163-182.
Xu Du,Feng Xiating,Li Shaojun,al et,2018.Testing technology and application of laser scanning tunnel deformation and rock structure plane[J].Chinese Journal of Geotechnical Engineering,40(7):1336-1343.
Zhang Chi,Wang Shijie,Chen Xijiang,al et,2019.Monitoring method of tunnel deformation near blasting construction based on 3D laser scanning technology[J].Blasting,36(1):139-146.
Zhou Weiyuan,1989.Advanced Rock Mechanics[M].Beijing:Water Resources and Hydropower Press.
陈娜,2018.基于三维激光扫描的边坡岩体结构信息提取和变形监测研究[D].武汉:武汉大学.
董秀军,黄润秋,2006.三维激光扫描技术在高陡边坡地质调查中的应用[J].岩石力学与工程学报,25(增2):3629-3635.
葛云峰,唐辉明,李伟,等,2016.基于岩体结构特征的高速远程滑坡致灾范围评价[J].地球科学,41(9):1583-1592.
葛云峰,夏丁,唐辉明,等,2017.基于三维激光扫描技术的岩体结构面智能识别与信息提取[J].岩石力学与工程学报,36(12):3050-3059.
何秉顺,丁留谦,孙平,2007.三维激光扫描系统在岩体结构面识别中的应用[J].中国水利水电科学研究院学报,5(1):45-47.
荆洪迪,李元辉,张忠,等,2015.基于三维激光扫描的岩体结构面信息提取[J].东北大学学报(自然科学版),36(2):280-283.
刘昌军,丁留谦,孙东亚,2011.基于激光点云数据的岩体结构面全自动模糊群聚分析及几何信息获取[J].岩石力学与工程学报,30(2):358-364.
陆培庆,唐超,2020.移动式三维激光扫描技术在地铁隧道变形监测中的应用[J].测绘通报,14(5):155-160.
石根华,1981.岩体稳定分析的几何方法[J].中国科学,(4):487-495.
宋杰,胡辉,Azzam R,2013.基于 LiDAR 技术的节理岩质边坡有限元分析[J].岩石力学与工程学报,32(增2):3973-3977.
许度,冯夏庭,李邵军,等,2018.激光扫描隧洞变形与岩体结构面测试技术及应用[J].岩土工程学报,40(7):1336-1343.
张弛,王世杰,陈西江,等,2019.基于三维激光扫描技术的临近爆破施工隧道变形监测方法[J].爆破,36(1):139-146.
周维垣,1989.高等岩石力学[M].北京:水利水电出版社.
[1] 毕林,王黎明,段长铭. 矿井环境高精定位技术研究现状与发展[J]. 黄金科学技术, 2021, 29(1): 3-13.
[2] 毕林,段长铭,任助理. 基于RANSAC的地下矿山巷道边线检测算法[J]. 黄金科学技术, 2020, 28(1): 105-111.
[3] 胡建华,徐朔寒,徐泽林,韩磊. 城市地下矿山采矿方法的数值与熵权耦合优选[J]. 黄金科学技术, 2019, 27(4): 513-521.
[4] 刘定一, 王李管, 陈鑫, 钟德云, 徐志强. 地下矿中长期计划多目标优化及应用研究[J]. 黄金科学技术, 2018, 26(2): 228-233.
[5] 何顺斌,刘杰. 基于谱聚类算法的岩体结构面产状优势分组[J]. 黄金科学技术, 2017, 25(4): 46-51.
[6] 曹祖华,罗周全,秦亚光,王玉乐. 基于局部搜索—模拟退火法的点云数据过滤研究[J]. 黄金科学技术, 2017, 25(1): 106-111.
[7] 聂兴信,张国丹. 基于熵值法—突变理论的地下矿山紧急避险系统可靠性研究[J]. 黄金科学技术, 2016, 24(6): 72-77.
[8] 陈建宏,曾闵,李涛,江时雨. 基于物元分析—未确知测度理论的地下矿山安全避险“六大系统”可靠性评估方法[J]. 黄金科学技术, 2015, 23(1): 80-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!