img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (1): 74-89.doi: 10.11872/j.issn.1005-2518.2021.01.138

• 矿产勘查与资源评价 • 上一篇    下一篇

湖南通道地区金矿床成矿流体特征及成矿物质来源:来自流体包裹体、H-O-S同位素的证据

谢玉华1,高华1,张哲1,杨亮1,柯新星1,刘晓敏1,罗建镖2,3,刘琦2,3,许坤林2,3,刘继顺2,3,王智琳2,3,孔华2,3(),刘飚2,3   

  1. 1.湖南省核工业地质局三〇一大队,湖南 长沙 410114
    2.中南大学有色金属成矿预测与地质环境监测教育部重点实验室,湖南 长沙 410083
    3.中南大学地球科学与信息物理学院,湖南 长沙 410083
  • 收稿日期:2020-07-29 修回日期:2020-11-29 出版日期:2021-02-28 发布日期:2021-03-22
  • 通讯作者: 孔华 E-mail:konghua2006@126.com
  • 作者简介:谢玉华(1967-),女,广西柳州人,高级工程师,从事地质找矿勘查工作。982700168 @qq.com
  • 基金资助:
    湖南省核工业地质局科研项目“雪峰弧形带西南段金、锑矿成矿条件分析及找矿前景研究”(KY2018-301-01)

Ore-forming Fluid Characteristics and Material Source of Gold Deposits in Tongdao County,Hunan Province:Evidence from Fluid Inclusions and H-O-S Isotopes

Yuhua XIE1,Hua GAO1,Zhe ZHANG1,Liang YANG1,Xinxing KE1,Xiaomin LIU1,Jianbiao LUO2,3,Qi LIU2,3,Kunlin XU2,3,Jishun LIU2,3,Zhilin WANG2,3,Hua KONG2,3(),Biao LIU2,3   

  1. 1.301 Brigade,Hunan Nuclear Industry Geological Bureau,Changsha 410114,Hunan,China
    2.Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring,Ministry of Education,Central South University,Changsha 410083,Hunan,China
    3.School of Geoscience and Info-physics,Central South University,Changsha 410083,Hunan,China
  • Received:2020-07-29 Revised:2020-11-29 Online:2021-02-28 Published:2021-03-22
  • Contact: Hua KONG E-mail:konghua2006@126.com

摘要:

通道地区金矿床位于雪峰弧形金锑矿带西南段,主要包括茶溪、金坑和黄垢3个中小型金矿床,矿脉发育在前寒武系浅变质地层中,受断裂控制明显,矿石类型为石英脉型与蚀变岩型。通过野外地质调查、显微鉴定、流体包裹体测试及H、O、S同位素分析,对成矿流体特征与成矿物质来源进行约束。分析结果表明:成矿过程主要划分为2个阶段,一是石英+黄铁矿+毒砂+绢云母+金阶段;二是石英+绢云母+少量金阶段;其中茶溪矿区第一阶段石英包裹体均一温度为155~297 ℃,峰值为210~220 ℃,盐度[w(NaCl)]为4.9%~11.7%,第二阶段石英包裹体均一温度为135~233 ℃,峰值为160~170 ℃,盐度为3.3%~9.7%;金坑矿区第一阶段石英包裹体均一温度为202~261 ℃,峰值为210~220 ℃,盐度为5.6%~10.1%,第二阶段石英包裹体均一温度为134~203 ℃,峰值为150~160 ℃,盐度为3.8%~8.8%;黄垢矿区第一阶段石英包裹体均一温度为176~319 ℃,峰值为220~240 ℃,盐度为5.1%~11.7%;3个矿床中成矿流体的H-O同位素组成具有相似的变化趋势,第一阶段δ18Ofluid变化较小,分布在+4.95‰~+6.95‰之间,第二阶段δ18Ofluid分布在+1.08‰~ +1.38‰之间,而δD值变化较大,分布在-83‰~-33‰之间,因此第一阶段成矿流体为中温中低盐度的流体,来源以变质流体为主,可能有岩浆热液的叠加,第二阶段成矿流体为低温低盐度的流体,指示有大气水的混入。另外,黄垢矿区黄铁矿中的δ34S值分布范围较广,为-15.79‰~+3.88‰;金坑矿区硫化物δ34S值较为集中,为-5.02‰~+0.74‰。结合区域地层中S同位素组成与黄铁矿电子探针分析,认为载金硫化物硫源(δ34S值接近零值)主要为深部岩浆,而不含金或含微量金的硫化物(δ34S值为负值)来源于围岩地层。

关键词: 雪峰弧形构造带, 金矿床, 石英流体包裹体, H-O-S同位素, 流体特征, 通道地区, 湖南省

Abstract:

A large number of medium-large gold deposits developed in the Xuefeng arc-shaped structural belt,which mainly composed of precambrian strata and undergo low-grade metamorphism with multi-stage tectonic movement.In addition,long-term large-scale magma activity (e.g. Silurian,Triassic) occurred in the Taojiang-Chengbu fault zone on the eastern margin of Xuefeng Mountain.Due to the overprint of regional metamorphic hydrothermal and deep magma hydrothermal fluid,both metamorphic hydrothermal and magmatic hydrothermal Au-Sb deposits are occurred in Xuefeng Mountain region.Previous research and exploration mainly focused on gold deposits in the northern and middle district of the metallogenic belt,that is lacking in the southern district (e.g. Huitong,Jingzhou,Tongdao).The gold deposits in the Tongdao County are composed of the Chaxi,Jinkeng,and Huanggou small-medium quartz vein and altered rock type gold deposits,which developed in low-grade precambrian metamorphic strata and controlled by faults.To constrain the ore forming fluids characteristics and source,field investigations,microscopic rock-mineral determination,fluid inclusion and H-O-S isotope analysis were completed in this research.The representative ore-bearing quartz vein samples were selected to identify the petrographic characteristics of inclusions for micro-thermal analysis.In addition,the H,O isotope composition were analyzed with a single mineral of quartz and the in-situ S isotope analysis of gold-bearing sulfides (e.g. pyrite and arsenopyrite) are obtained by LA-ICP-MS.Analysis results show that it can be divided into two metallogenic stages,stage Ⅰ is quartz+pyrite+arsenopyrite+sericite+gold,stage Ⅱ is quartz+sericite+minor gold.The homogenization temperature of stage Ⅰ quartz fluid inclusions in the Chaxi deposit is 155~297 ℃ with a peak value of 210~220 ℃ and the salinity[w(NaCl)] is 4.9%~11.7%.The homogenization temperature of stage Ⅱ quartz fluid inclusions in the Chaxi deposit is 135~233 ℃ with a peak value of 160~170 ℃ and the salinity is 3.3%~9.7%.The homogenization temperature of quartz fluid inclusions in the Jinkeng deposit is 202~261 ℃ with a peak value of 210~220 ℃ and the salinity is 5.6%~10.1%.The homogenization temperature of stage Ⅱ quartz fluid inclusions in the Jinkeng deposit is 134~203 ℃ with a peak value of 150~160 ℃ and the salinity is 3.8%~8.8%.The homogenization temperature of stage Ⅰ quartz fluid inclusions in the Huanggou deposit is 176~319 ℃ with a peak value of 220~240 ℃ and the salinity is 5.1%~11.7%.The H-O isotopic composition of the ore-forming fluids in the three deposits has a similar evolution trend:The stage Ⅰ δ18Ofluid change from +4.95‰ to +6.95‰ and the stage Ⅱ δ18Ofluid change from +1.08‰ to +1.38‰,while the δD value changes greatly,from -83‰ to -33‰.Therefore,the stage Ⅰ ore-forming fluid is a medium-temperature and medium-low-salinity fluid,the source of which are dominated by metamorphic water with overprint of deep magma water and the stage Ⅱ ore-forming fluid is a low-temperature and low-salinity fluid,indicating an addition of meteoric water.In addition,the δ34S values of pyrite in the Huanggou deposit is scattered,ranging from -15.79‰ to +3.88‰,while the δ34S values of sulfide in the Jinkeng deposit is concentrated,which is -5.02‰~+0.74‰.Combined with the sulfur isotope composition of regional strata and the EPMA analysis of pyrite,it is believed that the sulfur source of gold-bearing sulfide (δ34S value near zero) is mainly originated from deep magmatic,but no gold or with trace gold content sulfide (negative δ34S value) are derived from wall rock formation.

Key words: Xuefeng arc-shaped structural belt, gold deposit, quartz fluid inclusion, H-O-S isotope, fluid characteristics, Tongdao area, Hunan Province

中图分类号: 

  • P618.51

图1

雪峰弧形构造带地质简图(杨冲,2012)1.白垩系—上第三系;2.上三叠统—侏罗系;3.泥盆系—三叠系;4.震旦系—志留系;5.板溪群和冷家溪群;6.断裂构造;7.花岗岩体;8.矿点;9.金矿;10.锑矿;11.钨矿"

图2

金坑—黄垢—茶溪金矿地质图(熊建忠,2017)(a)通道地区地质简图;(b)金坑矿区地质图;(c)黄垢矿区地质图;(d)茶溪矿区地质图1.下震旦统洪江组;2.下震旦统南沱组;3.下震旦统大塘坡组;4.下震旦统湘锰组;5.下震旦统江口组第三段;6.下震旦统江口组第二段;7.下震旦统江口组第一段;8.板溪群漠滨组上段;9.板溪群漠滨组下段;10.基性岩;11.正断层及产状;12.逆断层及产状;13.平移断层;14.性质不明断层;15.地层界线;16.矿脉及编号;17.推测矿脉;18.平行不整合界线;19.矿区范围"

图3

通道地区金矿床石英脉野外特征(a)早期变形石英脉,石香肠构造;(b)顺层石英脉;(c)切层石英脉;(d)成矿后石英脉;(e)含矿石英脉;(f)网脉状石英脉,含硫化物;(g)石英脉分支复合及膨大收缩;(h)含硫化物的硅化角砾岩;(i)含硫化物石英脉分支复合;(j)陡倾脉分支缓倾石英脉;(k)陡倾脉壁有硫化物,对称分布;(l)陡倾脉切割缓倾石英脉;(a)~(d)样品采自金坑矿床;(e)~(h)样品采自黄垢矿床;(i)~(l)样品采自茶溪矿床"

图4

流体包裹体测温样品特征(a)第一阶段含硫化物团块石英脉(样品编号:180724-04);(b)第一阶段含黄铁矿毒砂石英脉(样品编号:180724-05);(c)第一阶段含黄铁矿石英脉(样品编号:180725-02);(d)第一阶段含黄铁矿石英脉(样品编号:181018-11);(e)第一阶段强绿泥石化石英脉(样品编号:180726-03);(f)第二阶段弱绿泥石化石英脉(样品编号:180726-04)"

表1

通道地区金矿床样品信息"

样品编号矿区阶段样品特征样品编号矿区阶段样品特征
180724-04金坑V2号脉石英脉180725-10黄垢含矿石英脉
180724-05金坑含矿石英脉,下盘见褪色化带180725-11黄垢含矿石英脉
180724-11金坑含硫化物矿石180725-17黄垢含矿石英脉
180724-12金坑含硫化物矿石180725-18黄垢顺层含矿石英脉(未见硫化物)
180724-15金坑含矿石英脉(未见硫化物)180726-02茶溪陡立含矿石英脉
181018-11金坑含硫化物矿石180726-03茶溪陡倾含矿石英脉
180725-01黄垢含矿石英脉180726-04茶溪平缓含矿石英脉(未见硫化物)
180725-02黄垢含矿石英脉180726-05茶溪含矿石英脉
180725-04黄垢含硫化物矿石180726-06茶溪含矿石英脉
180725-16黄垢含黄铁矿变质砂岩

图5

通道地区金矿床流体包裹体特征"

表2

通道地区金矿床石英中Ⅰ型流体包裹体特征"

样品编号矿床成矿阶段矿物数量气/液比/%大小/μm均一温度/℃盐度[w(NaCl)]/%
变化峰值变化峰值
180726-06茶溪矿区石英2615~255~30155~297210~2204.9~11.76~7
180726-04茶溪矿区石英1915~205~20135~233160~1703.3~9.75~6
180724-04金坑矿区石英2010~203~10202~261210~2205.6~10.17~8
180724-15金坑矿区石英2010~205~30134~203150~1603.8~8.86~7
180725-10黄垢矿区石英1915~3015~30179~319220~2305.8~11.78~9
180725-11黄垢矿区石英2015~2515~25176~296230~2405.1~11.39~10

图6

通道地区金矿床流体包裹体均一温度—频率直方图"

图7

通道地区金矿床流体包裹体盐度—频率直方图"

表3

通道地区金矿床石英的H、O同位素组成"

样品编号矿床成矿阶段矿物δDδ18OquartzT/℃δ18OH2O
180726-02茶溪矿区石英-6517.12206.60
180726-03茶溪矿区石英-63172206.50
180726-05茶溪矿区石英-6316.22205.70
180726-06茶溪矿区石英-5116.52206.00
180724-04金坑矿区石英-8316.32205.80
180724-05金坑矿区石英-4416.22205.70
180724-15金坑矿区石英-7115.71601.08
180725-01黄垢矿区石英-6015.52305.55
180725-02黄垢矿区石英-33152305.05
180725-10黄垢矿区石英-7015.22305.25
180725-11黄垢矿区石英-6014.92304.95
180725-17黄垢矿区石英-5916.92306.95
180725-18黄垢矿区石英-71161601.38

图8

通道地区金矿床硫化物显微特征(a)金坑石英脉中的浸染状黄铁矿;(b)金坑石英脉中的浸染状毒砂;(c)黄垢石英脉中充填的他形黄铁矿;(d)黄垢变质砂岩中的自形黄铁矿(见环带);(e)茶溪石英脉中的黝铜矿;(f)茶溪石英脉中的黝铜矿;Py-黄铁矿;Qtz-石英;Ccp-黄铜矿;Apy-毒砂;Thr-黝铜矿"

表4

通道地区金矿床硫化物原位S同位素组成"

样品编号成矿阶段矿物δ34S/‰采样位置样品编号成矿阶段矿物δ34S/‰采样位置
180724-11-1黄铁矿+0.74金坑矿区180725-04-7黄铁矿+1.16黄垢矿区
180724-11-2黄铁矿-2.73金坑矿区180725-04-8黄铁矿+3.45黄垢矿区
180724-11-3黄铁矿-4.97金坑矿区180725-04-9黄铁矿+0.98黄垢矿区
180724-11-4黄铁矿-3.66金坑矿区180725-16-1黄铁矿-15.79黄垢矿区
180724-11-5黄铁矿-4.79金坑矿区180725-16-2黄铁矿-12.33黄垢矿区
180724-12-1毒砂-3.68金坑矿区180725-16-3黄铁矿-11.56黄垢矿区
180724-12-2毒砂-1.56金坑矿区180725-16-4黄铁矿-12.28黄垢矿区
180724-12-3毒砂-1.72金坑矿区180725-16-5黄铁矿-10.01黄垢矿区
180724-12-4毒砂-2.90金坑矿区180725-16-6黄铁矿-11.15黄垢矿区
180724-12-5毒砂-1.86金坑矿区180725-16-7黄铁矿-12.74黄垢矿区
181018-11-1黄铁矿-5.02金坑矿区180725-16-8黄铁矿-14.72黄垢矿区
181018-11-2黄铁矿-4.13金坑矿区180725-16-9黄铁矿-13.69黄垢矿区
181018-11-3黄铁矿-3.17金坑矿区180725-16-10黄铁矿-13.33黄垢矿区
181018-11-4黄铁矿-4.15金坑矿区180725-16-11黄铁矿-10.52黄垢矿区
181018-11-5黄铁矿-3.42金坑矿区180725-16-12黄铁矿-10.81黄垢矿区
181018-11-6黄铁矿-3.34金坑矿区180725-16-13黄铁矿-11.79黄垢矿区
180725-02-1黄铁矿+3.88黄垢矿区180725-16-14黄铁矿-6.49黄垢矿区
180725-02-2黄铁矿-6.23黄垢矿区180725-16-15黄铁矿-7.28黄垢矿区
180725-02-3黄铁矿-11.03黄垢矿区180725-16-16黄铁矿-11.74黄垢矿区
180725-02-4黄铁矿-12.16黄垢矿区180725-16-17黄铁矿-6.75黄垢矿区
180725-02-5黄铁矿+1.37黄垢矿区180726-06-1黝铜矿+6.59茶溪矿区
180725-04-1黄铁矿+0.40黄垢矿区180726-06-2黝铜矿+7.05茶溪矿区
180725-04-2黄铁矿-1.43黄垢矿区180726-06-3黝铜矿+4.18茶溪矿区
180725-04-3黄铁矿-6.68黄垢矿区180726-06-4黝铜矿+6.35茶溪矿区
180725-04-4黄铁矿-3.25黄垢矿区180726-06-5黝铜矿+7.37茶溪矿区
180725-04-5黄铁矿-3.44黄垢矿区180726-06-6黝铜矿+6.55茶溪矿区
180725-04-6黄铁矿-1.72黄垢矿区

图9

通道地区金矿S同位素频数分布直方图"

图10

通道地区金矿床石英流体包裹体均一温度与盐度双变量图"

图11

通道地区金矿床成矿流体的δD-δ18Ofluid图"

Bao Zhenxiang,Wan Rongjiang,Bao Juemin,1999.The metallogenetic series of the W,Sb,Au deposit and its stable isotopic research in western Hunan Province[J].Beijing Geology,(1):11-17.
BodnarR J, 1993.Revised equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. Geochimica et Cosmochimica Acta,57:683-684.
Chen Bolin,2002.A discussion on the metallogenic epoch of gold deposits in China[J].Geology Geochemistry,30(2):66-73.
Clayton R N,O’Neil J R,Mayeda T K ,1972.Oxygen isotope exchange between quartz and water[J].Journal of Geophysical Research Atmospheres,77(17):3057-3067.
He Guxian,1989.The geological features and the regularity of distribution of gold deposits in the zone of Xuefeng Mountain,west Hunan[J].Gold,10(5):2-6.
Jia Baohua,1994.Tectonic deformation of the Xuefeng uplift area in Hunan[J].Regional Geology of China,(1):65-71.
Liu Jishun,1996.Some problems in the study of gold mineralization in ductile shear zones[J].Geological Review,42(2):123-128.
Liu Qingquan,2018.Geological and geochemical characteristics and ore genesis of the Zhengchong gold deposit in the northeastern Hunan Province,China[R].Changsha:Central South University.
Liu Xiaomin,Yang Liang,2017.Hunan channel region gold and copper polymetallic metallogenic conditions analysis and prospecting future research[J].World Nonferrous Metals,(10):16-17.
Luo Xianlin,1990.On the source of ore-forming substances of precambrian gold deposits in Hunan Province[J].Journal of Guilin College of Geology,10(1):13-26.
Luo Xianlin,1991.Main characteristics and genetic types of gold ore deposits in Hunan[J].Journal of Guilin College of Geology,11(1):23-33.
Luo Xuequan,1996.Mineralization and prospecting guide of Chanziping gold deposit in Hunan[J].Hunan Geology,15(1):33-38.
Ma Xiaoshuang,2016.Study on Fluid Inclusions and Isotopic Characteristics of the Middle Xuefeng Gold-antimony Deposit in Xiangxi[D].Xiangtan:Hunan University of Science and Technology.
Mao Jingwen,Li Hongyan,1997.Research on genesis of the gold deposits in the Jiangnan terrain[J].Geochimica,26(5):71-81.
Ohmoto H,1972.Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J].Economic Geology,67(5):551-578.
Ohmoto H,Rye R O,1979.Isotopes of Sulfur and Carbon[M]∥Geochemistry of Hydrothermal Ore Deposits.New York:Wiley.
Peng Bo,Chen Guanghao,Piestrzynski Adam,2003.Ore mineralogy of stibnite ore-veins and its genetic implication for the W-Sb-Au ore deposit at Woxi,western Hunan,China[J].Acta Mineralogica Sinica,23(1):82-90.
Peng Bo,Liu Shengyou,Adam Piestrzynski,al et,2008.Mineralogical characteristics and their implications for deep prospecting of the Woxi gold deposit in western Hunan,China[J].China Geology,35(6):1286-1290.
Peng Bo,Frei Robert,Tu Xianglin,2006.Nd-Sr-Pb isotopic geochemistry of Scheelite from the Woxi W-Sb-Au deposit,western Hunan,implication for sources and evolution of ore forming fluids[J].Acta Geologica Sinica,80(4):561-570.
Peng Jiantang,Dai Tagen,1998.On the mineralization epoch of the Xuefeng gold metallogenic province[J].Geology and Prospecting,34(4):39-43.
Peng Jiantang,Hu Axiang,Xiao Jingyun,al et,2017.Study on mineralization of two types of gold deposits in metamorphic terranes in Hunan Province [C]// Abstracts of the 8th National Symposium on Metallogenic Theory and Prospecting Methods.Beijing:Professional Committee of Mineral Deposit Geochemistry of Chinese Society for Mineralogy Petrology and Geochemistry,Professional Committee of Mineral Deposit Geology of Geological Society of China ,State Key Laboratory of Ore Deposit Geochemistry:146.
Peng Nanhai,2017.Study on Geological and Geochemical Characteristics and Genesis of Woxi Au-Sb-W Deposit,Yuanling,Hunan Province[D].Changsha:Central South University.
Su Kangming,Zeng Yong,2007.Gold deposit type and its distribution characteristic in Snowberg arc structure belt[J].Gold,28(4):19-23.
Wang Chenghui,Xu Jue,Huang Fan,al et,2014.Resources characteristics and outline of regional metallogeny of gold deposits in China[J].Acta Geologica Sinica,88(12):2315-2325.
Wei Daofang,1993.Souce of ore forming materials in Canziping gold deposit and the geologic study of its mechanism of formation[J].Hunan Geology,12(1):29-34.
Wu Shichong,2014.Detailed exploration report for Chaxi gold deposit[R].Zhuzhou:Team 416 of Hunan Geological Exploration Bureau.
Xiong Jianzhong,2017.Field investigation summary report[R].Changsha:301 Brigade,Hunan Nuclear Industry Geological Bureau.
Yang Chong,2012.Analysis on Ore-controlling Structure and Research on Prospecting Direction of Gold-antimony in Xuefeng Arc Structure Belt[D].Xiangtan:Hunan University of Science and Technology.
Yi Shengxing,2012.Research on Geological Features,Fluid Inclusion and Genesis of Woxi Au-Sb-W Deposit in Hunan Province[D].Changsha:Central South University.
Zhang Jingrong,Luo Xianlin,1989.Metallogenic epochs of endogenic gold deposits in south China[J].Journal of Guilin College of Geology,9(4):369-379.
鲍振襄,万容江,鲍珏敏,1999.湘西钨锑金矿床成矿系列及其稳定同位素研究[J].北京地质,(1):11-17.
陈柏林,2002.论中国金矿床成矿时代特点[J].地质地球化学,30(2):66-73.
何谷先,1989.湘西雪峰山地区金矿床地质特征及其分布规律[J].黄金,10(5):2-6.
贾宝华,1994.湖南雪峰隆起区构造变形研究[J].中国区域地质,(1):65-71.
刘继顺,1996.韧性剪切带中金成矿研究的若干问题[J].地质论评,42(2):123-128.
刘清泉,2018.湘东北地区正冲金矿床地质地球化学特征与矿床成因[R].长沙:中南大学.
刘晓敏,杨亮,2017.湖南省通道地区金、铜多金属矿成矿条件分析及找矿前景研究[J].世界有色金属,(10):16-17.
罗献林,1990.论湖南前寒武系金矿床的成矿物质来源[J].桂林冶金地质学院学报,10(1):13-26.
罗献林,1991.湖南金矿床的成矿特征与成因类型[J].桂林冶金地质学院学报,11(1):23-33.
骆学全,1996.湖南铲子坪金矿的成矿规律及找矿标志[J].湖南地质,15(1):33-38.
马小双,2016.湘西雪峰中段金锑矿床流体包裹体及同位素特征研究[D].湘潭:湖南科技大学.
毛景文,李红艳,1997.江南古陆某些金矿床成因讨论[J].地球化学,26(5):71-81.
彭渤,Frei Robert,涂湘林,2006.湘西沃溪W-Sb-Au 矿床白钨矿Nd-Sr-Pb同位素对成矿流体的示踪[J].地质学报,80(4):561-570.
彭渤,陈广浩,Piestrzynski A,2003.湘西沃溪钨锑金矿床辉锑矿脉矿物学特征及其矿床成因指示[J].矿物学报,23(1):82-90.
彭渤,刘升友,Piestrzynski A,等,2008.湘西沃溪金矿床矿石矿物学特征及深部找矿意义[J].中国地质,35(6):1286-1290.
彭建堂,戴塔根,1998.雪峰地区金矿成矿时代问题的探讨[J].地质与勘探,34(4):39-43.
彭建堂,胡阿香,肖静芸,等,2017.湖南变质岩地体中两类金矿的成矿作用研究[C]// 第八届全国成矿理论与找矿方法学术讨论会论文摘要文集. 北京:中国矿物岩石地球化学学会矿床地球化学专业委员会,中国地质学会矿床地质专业委员会,矿床地球化学国家重点实验室:146.
彭南海,2017.湖南沅陵沃溪金—锑—钨矿床地质地球化学特征及成因研究[D].长沙:中南大学.
苏康明,曾勇,2007.雪峰弧形构造带金矿类型及分布特征[J].黄金,28(4):19-23.
王成辉,徐珏,黄凡,等,2014.中国金矿资源特征及成矿规律概要[J]地质学报,88(12):2315-2325.
魏道芳,1993.铲子坪金矿成矿物质来源及成矿机理的地球化学研究[J].湖南地质,12(1):29-34.
伍式崇,2014.茶溪详查报告[R]. 株洲:湖南地勘局四一六队.
熊建忠,2017.黄垢野外总结[R].长沙:湖南核工业地质局三〇一大队.
杨冲,2012.雪峰弧形构造带金(锑)控矿构造分析及找矿方向研究[D].湘潭:湖南科技大学.
易升星,2012.湖南省沃溪金锑钨矿床地质特征、流体包裹体特征及矿床成因研究[D].长沙:中南大学.
张景荣,罗献林,1989.论华南地区内生金矿床的形成时代[J].桂林冶金地质学院学报,9(4):369-379.
[1] 俞炳,邱海成,于昌明,曾庆栋,杜琴,叶杰,李建平,陈海涛. EH4音频大地电磁方法在辽东五龙金矿控矿构造及成矿预测研究中的应用[J]. 黄金科学技术, 2021, 29(5): 637-646.
[2] 丁书宏. 甘肃北山前红泉金矿床绢云母40Ar-39Ar年龄及其地质意义[J]. 黄金科学技术, 2021, 29(2): 173-183.
[3] 李松涛,刘建中,夏勇,谢卓君,谭亲平,王泽鹏,周光红,杨成富,蒙明华,谭礼金,汪小勇,李俊海,徐良易,王大富. 黔西南卡林型金矿聚集区构造地球化学弱矿化信息提取方法及其应用研究[J]. 黄金科学技术, 2021, 29(1): 53-63.
[4] 张斌,刘家军. 西秦岭寨上金矿床构造控矿特征与成矿规律[J]. 黄金科学技术, 2020, 28(6): 825-836.
[5] 高华, 谢玉华, 杨亮, 张哲, 柯新星, 刘晓敏, 罗建镖, 刘琦, 刘继顺, 王智琳, 孔华. 湖南通道地区金矿床中黄铁矿成分标型特征及对矿床成因的启示[J]. 黄金科学技术, 2020, 28(5): 712-726.
[6] 江思宏, 张莉莉, 刘翼飞, 李高峰, 季根源. 非洲大陆金矿分布特征与勘查建议[J]. 黄金科学技术, 2020, 28(4): 465-478.
[7] 秦运忠, 宋海军. 广西乐业县岩旦—岩堂金矿床找矿模型及成矿预测[J]. 黄金科学技术, 2020, 28(3): 317-327.
[8] 张克川,罗清威,义爱文,秦德雨,权成,杨继兵. 坦桑尼亚PL7184金矿床矿石特征与金的赋存状态[J]. 黄金科学技术, 2019, 27(6): 826-834.
[9] 郭剑衡, 冷成彪, 张兴春, 张伟, 尹崇军, 张陆佳, 田振东. 滇西北烂泥塘斑岩铜金矿床铁氧化物LA-ICP-MS微量元素特征及其地质意义[J]. 黄金科学技术, 2019, 27(5): 659-677.
[10] 孙伟清,刘燊,冯彩霞,范焱,刘永昌. 招平断裂带中段金矿床控矿条件与成矿规律研究[J]. 黄金科学技术, 2019, 27(3): 315-327.
[11] 曾叶欣,张钦礼. 基于弹性系数法的湖南省有色金属资源供需安全研究[J]. 黄金科学技术, 2018, 26(6): 803-810.
[12] 惠伟光,雷明选,夏元鹏,张晓斌,孙青,段绪省. 甘肃肃北县460金矿床地质特征及原生晕地球化学找矿预测[J]. 黄金科学技术, 2018, 26(5): 570-585.
[13] 宋明春,宋英昕,丁正江,李世勇. 胶东金矿床:基本特征和主要争议[J]. 黄金科学技术, 2018, 26(4): 406-422.
[14] 张蕾蕾, 张静, 王琦崧, 陈良, 陈叙安. 熊耳山地区槐树坪金矿床黄铁矿特征及其地质意义[J]. 黄金科学技术, 2018, 26(4): 481-491.
[15] 张琪彬, 张朋, 徐忠华, 刘向东, 张亮亮, 王斌, 王珊珊. 山东牟平阎家疃金矿床地质特征及成因探讨[J]. 黄金科学技术, 2018, 26(3): 279-288.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 路耀祖. 龙特锑金矿点地质特征及其找矿前景[J]. J4, 2008, 16(3): 13 -16 .
[2] 王忠军, 王永成, 姜维明, 胡世利, 刘金鹏. 降低金矿石回采边界品位分析与应用[J]. J4, 2007, 15(4): 54 -57 .
[3] 张中华, 张军艳. 几种过滤设备的特点及其效果[J]. J4, 2005, 13(1-2): 80 -83 .
[4] 龚朝阳, 江明阳. 广东河台金矿床成因分析与找矿方向[J]. J4, 2007, 15(4): 32 -35 .
[5] 孙虎,宋贵斌. 内蒙古虎拉林金矿平巷施工工艺探讨[J]. J4, 2007, 15(6): 38 -42 .
[6] 肖敬飞. 炭浆法处理河台金矿原矿石的工艺与实践[J]. J4, 2009, 17(3): 64 -67 .
[7] 徐忠敏,庄宇凯,栾作春. 部分正交析因法在浮选流程优化试验中的应用[J]. J4, 2008, 16(1): 7 -11 .
[8] 张奇, 王利, 王晓青. 静态留矿法设计与施工技术问题探讨[J]. J4, 2009, 17(1): 49 -52 .
[9] 吴再民, 幺金成. 氰化法提金及高纯度金的提纯[J]. J4, 2009, 17(3): 60 -63 .
[10] 金文洪,王凤仙. 加拿大大不列颠哥伦比亚省杰艾尔金多金属矿床成因类型及控矿因素分析[J]. J4, 2012, 20(3): 1 -9 .