img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (1): 120-128.doi: 10.11872/j.issn.1005-2518.2021.01.076

• 采选技术与矿山管理 • 上一篇    下一篇

基于虚拟现实技术的磨矿分级工艺自主设计系统的开发

郑高华(),王雨琦,王毓华(),卢东方,郑霞裕   

  1. 中南大学资源加工与生物工程学院,湖南 长沙 410083
  • 收稿日期:2020-04-17 修回日期:2020-07-02 出版日期:2021-02-28 发布日期:2021-03-22
  • 通讯作者: 王毓华 E-mail:easynzh@163.com;wangyh@csu.edu.cn
  • 作者简介:郑高华(1996-),男,山东日照人,硕士研究生,从事基于虚拟现实技术的磨矿分级设计及配置系统研究工作。easynzh@163.com
  • 基金资助:
    中南大学中央高校基本科研业务费专项资金“基于VR技术的典型磨矿工艺设计系统开发”(2019zzts704)

Development of a Grinding-Classification Process Auto-design System Based on Virtual Reality Technology

Gaohua ZHENG(),Yuqi WANG,Yuhua WANG(),Dongfang LU,Xiayu ZHENG   

  1. School of Minerals Processing and Bioengineering,Central South University,Changsha 410083,Hunan,China
  • Received:2020-04-17 Revised:2020-07-02 Online:2021-02-28 Published:2021-03-22
  • Contact: Yuhua WANG E-mail:easynzh@163.com;wangyh@csu.edu.cn

摘要:

为探讨虚拟现实技术应用于矿物加工设计的可行性,基于虚拟现实平台——虚幻引擎4的蓝图系统开发了桌面式磨矿分级工艺自主设计系统。根据磨矿分级工艺设计过程的具体特点,将设计过程中的经验公式、经验数据及设备选型计算的人工智能算法转化为虚幻引擎蓝图系统的语言模型,较好地解决了磨矿分级工艺设计过程中的经验数据、经验公式以及设备选型参数和选型方法的处理问题。基于虚拟现实技术的磨矿分级工艺设计系统,根据用户提供的原始数据和指标,通过后台计算设计出最终方案。本系统的开发,证明采用虚拟现实技术处理磨矿分级工艺设计问题是可行的,为后续实现基于虚拟现实技术的磨矿车间设备配置设计创造了条件。

关键词: 矿物加工设计, 磨矿分级工艺, 虚拟现实技术, 系统开发, 虚幻引擎

Abstract:

To discuss the feasibility of the application of virtual reality technology in mineral processing design,and to solve the problems of long design cycle,low design efficiency and boring design process,which still exist in traditional mineral processing design,a desktop auto-design system of the grinding-classification process was developed in combination with the rapidly rising virtual reality technology.The development of this system takes virtual reality technology platform Unreal Engine 4 as the carrier,and relies on its Blueprint system and Unreal Motion Graphics UI Designer editor to build the whole process.In the process of development,focusing on the empirical formulas,empirical data,equipment selection parameters and equipment selection methods in the traditional grinding and classification process design,the blueprint programming language was used to transform them into a computer-based independent design method.The empirical formulas with complex structure,variable parameters and repeated use are converted into Blueprint system function or macro,the corresponding data of the table are stored as Blueprint array,the value range data are fitted into interpolation function,power function and other mathematical models,and then all of them are stored in the Event Chart of the Blueprint system.Simulation designer in the traditional design methods,using Blueprint design language to write algorithm procedures.After programming and testing,the system is compiled and packaged with Visual Studio 2019,and the Unreal Editor is used to release the Windows version for users to use.According to the original ore data and ore-dressing indexes input by the user,the system recommends the appropriate grinding process,and then,according to the recommended grinding classification process,carries out the calculation of ore volume and pulp indexes,grinding and grading equipment selection calculation,auxiliary equipment selection calculation,etc.,and finally forms a reasonable grinding classification process design scheme.In the process of system design,users can also reasonably change the conditions in the process according to the design requirements.The development of this system has proved that the application of virtual reality technology in mineral processing design is feasible.It has created conditions for the following development of the grinding workshop configuration design system based on virtual reality technology,and also provided useful reference for virtual reality technology to integrate into the mineral processing field.

Key words: mineral processing design, grinding-classification process, visual reality technology, system development, Unreal Engine

中图分类号: 

  • TP391.9

图1

磨矿分级工艺自主设计系统架构"

图 2

磨矿分级工艺自主设计系统功能结构"

图3

高堰式螺旋分级机计算函数“SET_D_FG”"

图4

函数“SET_D_FG”的调用"

表1

球磨机直径校正系数K2及K2数组的构建"

构建数组现厂生产磨机直径D′/mm设计磨机直径D/mm
9001 2001 5002 1002 7003 2003 6004 0004 500
a09001.001.191.341.661.852.072.102.262.41
a11 2000.841.001.141.401.631.741.761.912.04
a21 5000.740.871.001.221.451.521.551.691.80
a32 1000.600.710.811.001.171.251.301.411.49
a42 7000.510.610.700.851.001.091.171.231.30
a53 2000.470.570.640.800.921.001.071.121.19
a63 6000.460.550.620.760.860.941.001.061.12
a74 0000.440.520.590.710.810.890.951.001.06
a84 5000.420.490.560.670.770.840.890.931.00

表2

螺旋分级机粒度校正系数K2和K2′取值"

分级溢流粒度/mmK2K2

1.17

0.83

0.59

0.42

0.30

0.20

0.15

0.10

0.074

0.061

0.053

0.044

2.50

2.37

2.19

1.96

1.70

1.41

1.00

0.67

0.46

3.00

2.30

1.61

1.00

0.72

0.55

0.36

图5

螺旋分级机粒度校正系数曲线"

图6

一段闭路磨矿球磨机选型算法流程"

图7

两段全闭路磨矿球磨机选型算法流程"

图8

β1的编程计算过程"

表3

磨矿机给矿中-0.074 mm含量(%)与给矿粒度之间的关系"

给矿粒度/mm-0.074 mm含量占比/%
难碎性矿石中等可碎性矿石易碎性矿石
40235
20568
1081015
5101520
3152325

图9

β1的3种数学模型"

图10

磨矿分级工艺流程计算测试结果"

图11

磨矿分级工艺设备选型测试结果"

Chen Jin,Wang Yuhua,Zhou Longting,al et,1996.Study on intelligent CAD system for mineral processing technological equipment configuration[J].Metal Mine,(9):41-43.
Chen Jin,Zhang Farong,1994.Study on the expert system of grinding process program selection[J].Metallic Ore Dressing Abroad,(1):9-14.
Hong Yang,Zhou Keping,Liang Zhipeng,et al.Development of non-coal mine fire contingency training system based on VR technology[J].Gold Science and Technology,27(4):629-636.
Kuang Yali,Liu Shan,He Yaqun,al et,1996.Design expert system for coal preparation plant (CPDES)[J].Coal Processing & Comprehensive Utilization,(6):19-22.
Li Nan,Xie Haitong,Yan Xuesong,al et,2018.Design of a virtual experience system on fire escape based on UE4 blueprint[J].Journal of North China Institute of Aerospace Engineering,28(2):1-4.
Lu Chunyu,2019.Development of virtual instrument operation based on UE4[J].Electronic Technology & SoftwareEngineering,(1):91-92.
Lu Hao,Luo Zhouquan,Yang Biao,al et,2007.On virtual reality technology and its application in mining[J].China Tungsten Industry,22(4):22-25.
Nie Zhimiao,Bai Limei,Liu Shuxian,al et,2014.Reflections on the teaching reform of Computer Aided Design in mineral processing major[J].Science and Technology Innovation Herald,11(9):104,106.
Ren Kexin,Zhang Qi,2019.UE4 and virtual campus interaction design[J].Think Tank Era,(40):266,269.
Shen Yanchun,Cai Qingxiang,Zhang Youdi,al et,2002.Application of virtual reality technology in ecological reconstruction scenery simulation system of open-pit mines[J].Journal of China University of Mining & Technology,(1):4-8.
Wang Yuhua,Wang Huajun,2012.Engineering Design of Mineral Processing[M].Changsha:Central South University Press.
Wang Yuhua,Zhou Longting,Chen Songqiao,al et,1995a.Development of grinding process design software package: Design principle and structure[J].Non-Ferrous Mining and Metallurgy,(4):21-24.
Wang Yuhua,Zhou Longting,Chen Songqiao,al et,1995b.Development of the softwares for flotation process designing[J].China Mining Magazine,(4):64-70.
Wang Yuhua,Zhou Longting,Chen Songqiao,al et,1995c.Preliminary study on design expert system of concentrator[J].Metal Mine,(11):40-42.
Xiao Chunlian,1996.Preliminary study on intelligent decision support system for process design of concentrator[J].Nonferrous Metals Engineering & Research,17(Supp.):17-22.
Yang Qian,2015.The application status and development trend of virtual reality technology in industrial design[J].China High-Tech Enterprises,(16):48-49.
Yang Yuting,2018.Application of UE4 Engine Technology in Architectural Visual Design[D].Wuhan:Hubei University of Technology.
Yu Yunlong,2018.The application of three-dimensional design system in the design of concentrator[J].Mining Equipment,(5):74-75.
Zhang Ruixin,Ren Tingxiang,1998.Virtual reality and its application in mining engineering[J].Journal of China University of Mining & Technology,(3):11,13-16.
Zheng Ke,2016.Overview of key technologies and applications of virtual reality[J].Telecom World,(6):258.
陈荩,王毓华,周龙廷,等,1996.选矿工艺设备配置图智能CAD系统的研究[J].金属矿山,(9):41-43.
陈荩,张法荣,1994.碎磨流程方案选择专家系统的研究[J].国外金属矿选矿,(1):9-14.
洪洋,周科平,梁志鹏,等,2019.基于VR技术的非煤矿山火灾应急培训系统的开发[J].黄金科学技术,27(4):629-636.
匡亚莉,刘珊,何亚群,等,1996.选煤厂设计专家系统(CPDES)[J].煤炭加工与综合利用,(6):19-22.
李楠,谢海同,闫雪松,等,2018.基于UE4蓝图的火灾逃生虚拟体验系统的设计与实现[J].北华航天工业学 院学报,28(2):1-4.
陆春雨,2019.基于UE4的虚拟仪器操作的开发[J].电子技术与软件工程,(1):91-92.
鹿浩,罗周全,杨彪,等,2007.虚拟现实技术及其在矿业中的应用[J].中国钨业,22(4):22-25.
聂轶苗,白丽梅,刘淑贤,等,2014.矿物加工专业《计算机辅助设计》教学改革思考[J].科技创新导报,11(9):104,106.
任可欣,张琪,2019.UE4与虚拟校园交互设计[J].智库时代,(40):266,269.
申闫春,才庆祥,张幼蒂,等,2002.虚拟现实技术在露天矿生态重建仿真中的应用[J].中国矿业大学学报,(1):4-8.
王毓华,王化军,2012.矿物加工工程设计[M].长沙:中南大学出版社.
王毓华,周龙廷,陈松乔,等,1995a.磨矿工艺设计软件包的研制──设计原理及结构[J].有色矿冶,(4):21-24.
王毓华,周龙廷,陈松乔,等,1995b.浮选工艺流程设计软件的研制[J].中国矿业,(4):64-70.
王毓华,周龙廷,陈松乔,等,1995c.选矿厂设计专家系统初探[J].金属矿山,(11):40-42.
肖春莲,1996.选矿厂工艺设计智能决策支持系统初探[J].有色冶金设计与研究,17(增):17-22.
杨茜,2015.虚拟现实技术在工业设计中的应用现状与发展趋势[J].中国高新技术企业,(16):48-49.
杨豫婷,2018.UE4引擎技术在建筑可视化设计中的应用研究[D].武汉:湖北工业大学.
于云龙,2018.三维设计系统在选矿厂设计中的应用[J].矿业装备,(5):74-75.
张瑞新,任廷祥,1998.虚拟现实技术及其在采矿工程中的应用[J].中国矿业大学学报,(3):11,13-16.
郑轲,2016.虚拟现实关键技术及应用综述[J].通讯世界,(6):258.
[1] 王雨琦,郑高华,王毓华,卢东方,郑霞裕. 选矿厂计算机辅助设计(CAD)与虚拟现实技术应用现状及展望[J]. 黄金科学技术, 2021, 29(5): 729-739.
[2] 张二洋,陈建宏. 基于Surpac矿山设计软件及虚幻引擎实现的矿山虚拟现实漫游系统[J]. 黄金科学技术, 2017, 25(4): 93-98.
[3] 朱学礼,冯涛,柏瑞,宁霄峰,李肖,张子衿. “地质+”多元驱动智慧勘查初步应用[J]. 黄金科学技术, 2017, 25(1): 46-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李源. 国有施工企业面临的问题及对策[J]. J4, 2001, 9(3-4): 73 -84 .
[2] 冯锡文, 王新华. 系统动力学理论在矿井生产能力核定中的应用初探[J]. J4, 1999, 7(4~5): 45 -47 .
[3] 李保平,陈玉华,周晓中,刘建华,赵程龙,阎杰,刘金龙,雷迅. 青海各玛龙铅锌矿地质地球化学特征及找矿前景[J]. J4, 2011, 19(3): 9 -13 .
[4] 刘健 ,樊满华 ,邓志高 ,张青松 ,郑成英. 那林金矿全面留矿法试验研究[J]. J4, 2008, 16(6): 48 -50 .
[5] 张宝林,蔡新平,王杰,梁光河,丁汝福,肖骑彬,宋保昌,祁民. 晋冀蒙交界地区隐伏新类型金矿的找矿前景以堡子湾、九对沟、水晶屯金矿为例[J]. J4, 2004, 12(2): 5 -11 .
[6] 宋贺民, 张文钊, 徐述平. 胶东大磨曲家金矿地球化学异常模式及找矿意义[J]. J4, 2006, 14(6): 13 -23 .
[7] 衷水平. 含铜难处理金精矿焙烧—酸浸—氰化提金工艺研究[J]. 黄金科学技术, 2013, 21(2): 82 -85 .
[8] 任萌,段少帅,黄喜峰,武永江,王若梅,陈炳龙 . 新发展理念视阈下矿业城市资源综合利用现状及共同体策略——以汉中市为例[J]. 黄金科学技术, 2017, 25(5): 107 -115 .
[9] 杨征坤, 行天纬, 张忠坤, 林彬, 唐攀, 赫健, 次真白桑, 焦海军, 杨阳, 吴纯能, 吴鑫. 西藏甲玛超大型斑岩成矿系统找矿方向[J]. 黄金科学技术, 2019, 27(5): 648 -658 .
[10] 刘党权, 孙增鹏. 分段凿岩阶段矿房法的矿柱回收及放矿管理[J]. J4, 2005, 13(1-2): 58 -62 .