img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (4): 610-618.doi: 10.11872/j.issn.1005-2518.2020.04.181

• 采选技术与矿山管理 • 上一篇    

基于HFACS的高原矿山作业疲劳与人因失误率浅析

黄知恩1,2(),李明1,2(),廖国礼3,吴超1,2,黄锐1,2,李孜军1,2   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.中南大学安全理论创新与促进研究中心,湖南 长沙 410083
    3.中国安全生产科学研究院,北京 100021
  • 收稿日期:2019-11-08 修回日期:2020-04-02 出版日期:2020-08-31 发布日期:2020-08-27
  • 通讯作者: 李明 E-mail:550593820@qq.com;liming_csu@csu.edu.cn
  • 作者简介:黄知恩(1995-),女,湖南浏阳人,硕士研究生,从事安全人机工效和职业卫生防护等研究工作。550593820@qq.com
  • 基金资助:
    国家重点研发计划项目“高海拔高寒地区金属矿山开采安全技术研究与装备研发”(2018YFC0808400);“矿山职业危害防治关键技术及装备研究”(2017YFC080520400);中南大学研究生创新项目“高原矿井低氧环境下作业人员疲劳特征与安全对策研究”(2018zzts745)

Analysis of Human Fatigue and Error Rates in Plateau Mines Based on HFACS

Zhien HUANG1,2(),Ming LI1,2(),Guoli LIAO3,Chao WU1,2,Rui HUANG1,2,Zijun LI1,2   

  1. 1.School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
    2.Safety and Security Theory Innovation and Promotion Center,Central South University,Changsha 410083,Hunan,China
    3.China Academy of Safety Science and Technology,Beijing 100012
  • Received:2019-11-08 Revised:2020-04-02 Online:2020-08-31 Published:2020-08-27
  • Contact: Ming LI E-mail:550593820@qq.com;liming_csu@csu.edu.cn

摘要:

为了预防高原矿工作业时间长和工作任务繁重等因素引起的疲劳失误事故,针对高原缺氧、低温等环境特性,首先分析了人体作业疲劳积累特点,并通过构建高原矿山人体疲劳—作业失误机理图,概括了高原地区人体疲劳积累与作业失误的发生机制。其次,比较了不同海拔下人体生理机能和最大做工量的变化,划分出高原矿工疲劳积累的4个阶段(疲劳积累初期、疲劳积累稳定期、疲劳积累末期、疲劳恢复不可逆期(疲劳性损伤),基于对高原矿山作业者疲劳与行为错误之间关系的问卷调查分析,绘制出高原矿工各作业疲劳阶段失误率变化特征曲线。最后,运用人因分析和分类系统(HFACS),提出了高原矿山作业疲劳—人因失误框架(F-HFACS),全面分析了高原矿工疲劳的因素及其对人因失误发生的影响。研究表明:疲劳稳定期通常作业效率较高、失误率低且基本稳定;疲劳末期疲劳积累进一步加深,作业失误率激增,为防止疲劳性损伤,必须停止作业。该研究为高原矿山制定合理的轮班方案,降低作业失误率提供了科学依据。

关键词: 高原矿山, 疲劳失误事故, 疲劳积累, 人因分析和分类系统, 人因失误率

Abstract:

Human fatigue is one of the main factors leading to safety accidents,especially for plateau operations with “low air pressure,low oxygen partial pressure,low temperature” and other characteristics,it is more likely to cause operator fatigue,not only greatly reduces workers’work efficiency,but also easy induce human accidents,which pose a threat to the life and safety of the operator.This article aims to prevent fatigue errors caused by factors such as long working hours and heavy tasks in plateau mines,and to ensure the safe production and occupational health of workers in plateau mines under low oxygen environment.Firstly,the characteristics of human fatigue accumulation were analyzed.The human fatigue-operation error mechanism map of plateau mines was built,and the mechanism of human operating errors caused by fatigue accumulation in plateau areas was summarized.Secondly,the changes in human physiological functions and maximum work volume at different altitudes were compared.The four stages of fatigue accumulation in high-altitude operation (initial stage of fatigue accumulation,stable stage of fatigue accumulation,later stage of fatigue accumulation,irreversible stage of fatigue recovery(fatigue damage)) are divided.Based on a questionnaire survey on the relationship between fatigue and behavioral errors of plateau mine operators,the characteristic curves of the error rate at different fatigue accumulation stages in the plateau mining was drawn,which initially revealed the change trend of error rate in the initial stage,stalble stage,later stage and irreversible stage (fatigue damage) of plateau workers’fatigue accumulation.Finally,using human factors analysis and classification system (HFACS),the paper proposed the Fatigue-Human Errors Framework (F-HFACS) of plateau mines comprehensively analyzes the factors of plateau miners’ fatigue and their impact on the occurrence of human errors.This study showes that there are higher operating efficiency,lower work error rate and better working stability at the stable stage than those at other stages;The fatigue accumulation further deepened at the later stage,and the working error rate is sharply increased,and to prevent fatigue damage,the operation must be stopped.The study provides a scientific basis for the safety management personnel of plateau mines to formulate a reasonable shift plan and reduce the operational error rate.

Key words: plateau mine, fatigue accident, fatigue accumulation, human factor analysis and classification system, human error rate

中图分类号: 

  • X913.4

图1

2013~2017年非煤矿山事故死亡人数前10名地区事故总量图[3]"

图2

手工作业者疲劳程度随作业时间的变化曲线[16]"

图3

航空作业者疲劳程度随作业时间的变化曲线[17]"

图4

高原人体疲劳积累—作业失误机理图"

表1

矿山作业者生理机能与最大做功量随海拔高度的变化比较[12,18]"

海拔高度/m生理机能比较最大做功量比较/%
2 260-下降10.1
3 000思维能力、判断力下降明显下降29.2
4 000听觉、夜间视力受影响显著下降39.7
5 000高频范围听力下降-
6 000中、低频范围听力、定向力变差-

表2

工作中感到最累的时间段和行为失误次数统计"

时间段最大疲劳程度时间段占比/%行为失误次数占比/%
8点之前01.4
8点~10点44.3
10点~12点47.2
12点~14点128.7
14点~16点2010.1
16点~18点2214.5
18点之后4853.6

图5

高原矿山作业者最大疲劳程度与行为失误率变化曲线"

图6

各疲劳阶段失误率变化特征曲线"

表3

人体疲劳与失误率变化关系"

不同疲劳阶段失误率变化
疲劳积累初期(0-t1疲劳初期阶段的失误率初期相对较高,然后逐渐降低,趋于平稳进入稳定期,t1为稳定时间点,此时Δλt1)<0,fRt1)呈递减趋势
疲劳积累稳定期(t1-t2开始安全、高效工作区间,?λt2)=0,fRt2)基本无变化,t2为变化时间点
疲劳积累末期(t2-t3疲劳效应突显,作业效率、可靠性显著降低,失误率激增,安全风险明显增加,进入作业安全的临界区,此时,?λt3)>0,fRt3)呈快速增长趋势,t3为临界向危险区过渡的时间点

疲劳恢复不可逆期

(疲劳性损伤t3-t4

人体能量透支,作业安全无法保障,进入作业危险区,引起局部或全身性疲劳损伤,达到疲劳积累极限

图7

高原矿山作业F-HFACS框架"

1 李国建.高温高湿低氧环境下人体热耐受性研究[D].天津:天津大学,2008.
Li Guojian.Human Thermal Tolerance Under High Temperature,High Humidity and Low Oxygen Environment[D].Tianjin:Tianjin University,2008.
2 Kryskow M A,Beidleman B A,Fulco C S.Performance during simple and complex military psycho-motor tasks at various altitudes [J].Aviation,Space and Environmental Medicine,2013,84(11):1147-1152.
3 国家应急管理部.2017年全国非煤矿山生产安全事故统计分析报告[Z/OL].中国粉体技术网(2018-05-09)[2019-05-10]. )
National Emergency Management Department.Statistical Analysis Report of National Non-coal Mine Production Safety Accidents in 2017[Z/OL].China Powder Technology Online (2018-05-09) [2019-05-10].
4 国家安全生产监督管理总局.中国安全生产年鉴(2016)[M].北京:煤炭工业出版社,2017.
State Administration of Work Safety.China Safety Production Yearbook (2016) [M].Beijing:Coal Industry Press,2017.
5 Aqueveque P,Pino E J,Wiechmann E P.Monitoring physiological variables of mining workers at high altitude[J].IEEE Transactions on Industry Applications,2017,53(3):2628-2633.
6 Fletcher A.Staying safe in the Jungles of Borneo:Five studies of fatigue and cultural issues in remote mining projects[J].Industrial Health,2010,48(4):406-415.
7 方卫宁,张燕.轮班制度对于地铁司机疲劳的影响[J].中国安全科学学报,2010,20(2):17-22.
Fang Weining,Zhang Yan.Influence of shift system on subway drivers’fatigue[J].China Safety Science Journal,2010,20(2):17-22.
8 Bal E,Arslan O,Tavacioglu L.Prioritization of the causal factors of fatigue in seafarers and measurement of fatigue with the application of the Lactate Test[J].Safety Science,2015,72(3):46-54.
9 李乃文,徐梦虹,牛莉霞.基于ISM和AHP法的矿工习惯性违章行为影响因素研究[J].中国安全科学学报,2012,22(8):22-27.
Li Naiwen,Xu Menghong,Niu Lixia.Study on factors influencing miners’habitual violation behavior based on ISM and AHP[J].Journal of Safety Science and Techno-logy,2012,22(8):22-27.
10 于露,金龙哲,徐明伟,等.基于光电容积脉搏波的有限空间生理疲劳测量[J].工程科学学报,2018,40(10): 1215-1222.
Yu Lu,Jin Longzhe,Xu Mingwei,et al.Physiological fatigue measurement in limited space based on photoelectric volume pulse wave[J].Chinese Journal of Engineering,2018,40(10):1215-1222.
11 邢娟娟.煤矿工人体能负荷与工伤事故关系研究[J].中国安全生产科学技术,2005,1(4):19-21.
Xing Juanjuan.Study in the relation between fatigue of coal miners and coalmine accidents in China[J].Journal of Safety Science and Technology,2005,1(4):19-21.
12 蒋祖华.人因工程[M].北京:科学出版社,2011.
Jiang Zuhua.Human Engineering[M].Beijing:Science Press,2011.
13 刘坤. 基于元件故障率曲线的配电网可靠性评估和配电终端优化配置[D].郑州:郑州大学,2017.
Liu Kun. Reliability Evaluation and Distribution Terminal Optimal Configuration of Power Distribution System Based on Bathtub Curve of Component Failure Rate [D].Zhengzhou:Zhengzhou University,2017.
14 Fang D P,Jiang Z M,Zhang M Z,et al. An experimental method to study the effect of fatigue on construction workers’safety performance[J].Safety Science,2015,73:80-91.
15 Givi Z S,Jaber M Y,Neumann W P. Modelling worker reliability with learning and fatigue[J].Applied Mathematical Modelling,2015,39(17):5186-5199.
16 Visentin V,Sgarbossa F.Fatigue accumulation in the assignment of manual material handling activities to operators[J].IFAC-PapersOnLine,2018,51(11):826-831.
17 Paul S,Gangwar A,Bhargava K,et al.Diagnosis and prophylaxis for high-altitude acclimatization:Adherence to molecular rationale to evade high-altitude illnesses[J].Life Sciences,2018,203:171-176.
18 陈兆波,刘媛媛,曾建潮,等.煤矿安全事故人因分析的一致性研究[J].中国安全科学学报,2014,24(2):146-150.
Chen Zhaobo,Liu Yuanyuan,Zeng Jianchao,et al.Consistency research on human factors analysis of coal mining accidents[J].China Safety Science Journal,2014,24(2):146-150.
19 王刚.青海省煤矿事故特点及救援人员体能训练方法研究[D].北京:中国矿业大学,2013.
Wang Gang.Qinghai Province Coal Mine Accident Characteristics Research on Physical Training Method of Emergency Rescue Personnel[D].Beijing:China University of Mining,2013.
20 魏静.青藏铁路建设中高寒缺氧及保障问题的研讨[J].中国安全科学学报,2006,23(5),41-43.
Wei Jing.Discussion on the altitude and hypoxia in the Qinghai-Tibet railway construction[J].China Safety Science Journal,2006,23(5):41-43.
21 Chang Y H,Yang H H,Hsu W J. Effects of work shifts on fatigue levels of air traffic controllers[J].Journal of Air Transport Managemant,2019,76(7):1-9.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈力子, 曹东宏, 杨登美. 陕西金龙山金矿古楼山矿段元素地球化学特征[J]. J4, 2011, 19(1): 28 -33 .
[2] 路仁江, 刘鹏金, 娄伟华. 高水固结充填采矿法工艺创新与应用[J]. J4, 2011, 19(1): 51 -54 .
[3] 张印飞. 陕西双王金矿床八号矿体矿化规律探讨[J]. J4, 2008, 16(1): 35 -38 .
[4] 李斌, 邹海洋, 杨牧, 杜高峰, 韦继康, 王天国. 马来西亚吉兰丹州Ulu Sokor金矿地质特征及找矿方向[J]. J4, 2010, 18(4): 17 -21 .
[5] 胡琴霞, 孙彬, 亢瑜, 李淑芳, 张圣潇. 甘肃北金山金矿地质特征及成因[J]. J4, 2010, 18(6): 18 -21 .
[6] 林海平. 河台金矿剪切带构造演化及其与金成矿关系[J]. J4, 2010, 18(6): 30 -33 .
[7] 刘胜光, 高海峰, 黄锁英. 电子手薄在山东焦家金矿地质专业中的应用[J]. J4, 2010, 18(3): 79 -82 .
[8] 冷寒松, 邓尧增, 胥华龙, 刘涛, 王卓. 有底柱分段崩落采矿法在焦家金矿的研究与应用[J]. J4, 2010, 18(4): 65 -67 .
[9] 李晓英 ,任凤和 ,张晓博 ,郑庆道。. 黑龙江省东部区域动力学环境分析[J]. J4, 2008, 16(2): 24 -28 .
[10] 姜琪, 王荣超. 甘肃枣子沟金矿床形成环境及矿床成因[J]. J4, 2010, 18(4): 37 -40 .