img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (4): 603-609.doi: 10.11872/j.issn.1005-2518.2020.03.185

• 采选技术与矿山管理 • 上一篇    下一篇

江西某铜矿大型球磨机介质制度优化试验研究

李付博1(),肖庆飞2,3(),黄胤淇2,3,张谦2,3,王旭东2,3   

  1. 1.栾川县大东坡钨钼矿业有限公司,河南 洛阳 471500
    2.矿物加工科学与技术国家重点实验室,北京 100070
    3.昆明理工大学国土资源工程学院,云南 昆明 650093
  • 收稿日期:2019-11-13 修回日期:2020-03-03 出版日期:2020-08-31 发布日期:2020-08-27
  • 通讯作者: 肖庆飞 E-mail:541356574@qq.com;13515877@ qq.com
  • 作者简介:李付博(1976-),男,河南周口人,工程师,从事选矿理论与工艺研究工作。541356574@qq.com
  • 基金资助:
    国家自然科学基金面上项目“多级配球介质磨矿的能量匹配及机理研究”(51774157);矿物加工科学与技术国家重点实验室开放研究基金“磨矿介质在磨机中的运动规律研究”(201707)

Experimental Study on Optimizing the Media System of Large-scale Ball Mill in a Copper Mine in Jiangxi Province

Fubo LI1(),Qingfei XIAO2,3(),Yinqi HUANG2,3,Qian ZHANG2,3,Xudong WANG2,3   

  1. 1.Luanchuan County Dadongpo Tungsten and Molybdenum Mining Co. , Ltd. ,Luoyang 471500,Henan,China
    2.State Key Laboratory of Mineral Processing Science and Technology,Beijing 100070
    3.Faculty of Land Resource Engineering,Kunming University of Science and Technology,Kunming 650093,Yunnan,China
  • Received:2019-11-13 Revised:2020-03-03 Online:2020-08-31 Published:2020-08-27
  • Contact: Qingfei XIAO E-mail:541356574@qq.com;13515877@ qq.com

摘要:

针对江西某铜矿选厂大型球磨机磨矿产品质量差、处理量低、运转率低和能耗高等问题,在测定矿石力学性质的基础上,采用控制变量法,通过对比多组实验室试验方案的磨矿效果,最终确定球磨机的最佳介质制度为φ60∶φ50∶φ40∶φ30=30∶25∶30∶15。试验结果表明:推荐钢球方案较现场方案过粗粒级级别产率降低了1.21个百分点,中间易选粒级级别产率提高了2.53个百分点,过粉碎粒级级别产率减少了0.32个百分点;较钢段方案过粗粒级、磨矿细度-0.074 mm占比和中间易选级别产率分别提高了4.58个百分点、1.48个百分点和3.25个百分点,对比工业试验前后矿石月处理量提高了13 242 t,运转率提高了2.18个百分点,月功率降低了173 kW。研究表明:优化磨矿介质制度不仅可以提高磨矿产品质量,而且对节能降耗具有重要的促进意义,有助于提升公司核心技术水平,对同类型矿山具有借鉴意义。

关键词: 铜矿, 大型球磨机, 粒度组成, 介质制度, 磨矿产品, 粒度均匀性, 运转率

Abstract:

In order to improve the problems of unreasonable particle size composition,low processing capacity,low transfer rate and high energy consumption of large-scale ball mill grinding products,achieving the purpose of improving the quality of grinding products and optimizing the beneficiation index of the beneficiation plant in a copper mine in Jiangxi,in this paper,the test is performed according to the following steps.Firstly,the main mechanical properties of the ore were determined,including bulk density,elastic modulus,and Poisson’s ratio.Secondly,a laboratory grinding comparison test was carried out in a D×L=240 mm×300 mm)mill,by comparing the grinding effects of the five grinding schemes of the recommended scheme,the plant scheme,the larger scheme,the smaller scheme,and the steel section scheme,the working media system of the mill media with the best ore matching of the concentrator was finally determined as φ60∶φ50∶φ40∶φ30=30∶25∶30∶15.Summarizing the ore mechanical property test results and laboratory grinding test results,we can conclude that:The ore mechanical property test results show that the average ore bulk density is 2.78 g/cm3,the average hardness is 7.9,the average elastic modulus is 3.11×104 MPa,and Poisson’s ratio with average value of 0.25.The overall properties of the ore are media hardness but high toughness.During the ore grinding process,the number of grinding times per unit time should be strengthened.The results of laboratory grinding show that the recommended scheme has a reduction of 1.21 percentage points in the coarse grade (+0.200 mm) and 0.32 percentage points in the over-comminuted grade(-0.010 mm) and the intermedia easily selectable grade(-0.200+0.010 mm) grain content increased by 2.53 percentage points compared with the current plant scheme;Recommended scheme has a better grinding effect compared with steel section scheme,although the over-comminuted grade(-0.010 mm) grain of recommended scheme is 2.75 percentage points higher,the coarse grade(+0.200 mm) grain grade content,grinding fineness(-0.074 mm) grain grade content and intermediate easily selectable grade(-0.200+0.010 mm) grain grade content have increased respectively,they increased by 4.58 percentage points,1.48 percentage points and 3.25 percentage points.Compared with data before and afterthe industrial test,the monthly processing capacity was increased by 13 242 t,the transfer rate of the mill was increased by 2.18 percentage points and the monthly power consumption was reduced by 173 kW.It shows that optimizing the grinding media system can not only improve the quality of the grinding products to a certain extent,but also have an important promotion significance for energy saving and consumption reduction,significantly improve the company’s core technical level and have reference significance for the same type of mine.

Key words: copper ore, large-scale ball mill, granular composition, media system, grinding products, particle size uniformity, transfer rate

中图分类号: 

  • TD982

表1

实验室磨矿条件"

参数参数值
磨机类型湿式球磨机
磨机尺寸(直径D×长度L)/mm240×300
球磨机转速/%75
磨矿时间/min18
球荷重量/kg11.5
球磨机给矿量/kg2
磨矿浓度/%70
磨矿介质尺寸和配比变量

表2

磨矿试验方案"

方案 编号方案名称方案内容平均球径 /mm
1现场方案φ70∶φ60∶φ50∶φ40∶φ30=30∶20∶20∶20∶1053.0
2推荐方案φ60∶φ50∶φ40∶φ30=30∶25∶30∶1547.0
3偏大方案φ70∶φ60∶φ50=25∶35∶4058.5
4偏小方案φ50∶φ40∶φ30=25∶35∶4038.5
5钢段方案(55×60)∶(45×50)∶(35×40)∶(25×30) =30∶25∶30∶1547.0

表3

评价指标"

评价指标粒级范围/mm
过粗级别+0.200
中间易选级别-0.200+0.010
磨矿细度-0.074
过粉碎级别-0.010

表4

矿石力学性质测定结果"

矿块编号天然容重/(g·cm-3单轴抗压强度/MPa平均强度/MPa割线弹性模量E50/(×104 MPa)E50平均值割线泊松比U50U50平均值
1#矿块2.6979.483.83.723.870.270.27
88.24.140.27
83.83.740.28
2#矿块2.8969.472.14.014.100.140.14
71.33.950.12
75.74.340.15
3#矿块2.7664.271.44.034.270.320.33
73.24.540.34
76.94.170.33

图1

1#和2#旋流器沉砂正累积粒度特性曲线"

图2

排矿正累积粒度特性曲线"

图3

不同钢球介质方案磨矿产品正累积粒度特性曲线"

图4

不同钢球介质方案磨矿效果"

图5

不同介质方案的磨矿产品正累积粒度特性曲线"

图6

不同介质配比方案的磨矿效果对比"

表5

工业试验前后生产指标比较"

生产指标工业试验前工业试验后
矿石总处理量/t670 385710 112
月矿石处理量/t223 462236704
运转率/%93.6495.82
功率/kW9 3229 149
1 任文礼.提高大型球磨机处理能力的关键技术研究[D].沈阳:东北大学,2015.
Ren Wenli.Key Technologies Research on Improving Processing Capacity of Large-scale Ball Mill[D].Shenyang:Northeastern University,2015.
2 罗文舜.大型球磨机控制系统的设计[D].鞍山:辽宁科技大学,2016.
Luo Wenshun.The Design of Large Ball Mill Control System[D].Anshan:University of Science and Technology Liaoning,2016.
3 王越,杨世亮,邵爽,等.大型球磨机钢球配比试验研究与工业应用[J].有色金属(选矿部分),2016(3):63-65.
Wang Yue,Yang Shiliang,Shao Shuang,et al.Industrial test research and application on the steel ball grading of the large-scale ball mill [J].Nonferrous Metals (Mineral Processing Section),2016(3):63-65.
4 马斌,刘建远.磨矿产品粒度组成对铅浮选的影响研究[J].有色金属(选矿部分),2016(2):29-33.
Ma Bin,Liu Jianyuan.Research of effect of the particle size composition of grinding product on the flotation of lead[J].Nonferrous Metals (Mineral Processing Section),2016(2):29-33.
5 严刘学,史广全,刘安平,等.梅山铁矿提高磨矿产品均匀性试验[J].现代矿业,2014,30(4):130-132.
Yan Liuxue,Shi Guangquan,Liu Anping,et al.Study on mineral processing technology of refractory copper lead zincpoly metal licores [J].Modern Mining,2014,30(4):130-132.
6 刘青,彭良振,王宝,等.介质的尺寸和配比对球磨机磨矿粒度影响的研究[J].有色金属(选矿部分),2015(6):68-73.
Liu Qing,Peng Liangzhen,Wang Bao,et al.Effects of different size and proportion of steel balls on grinding size in ball mill [J].Nonferrous Metals (Mineral Processing Section),2015(6):68-73.
7 李冬莲,汪桥,曹先敏,等.胶磷矿磨矿特性对浮选效果影响研究[J].非金属矿,2014(6):49-51.
Li Donglian,Wang Qiao,Cao Xianmin,et al.The research of grinding characteristics of phosphate on flotation[J].Non-Metallic Mines,2014(6):49-51.
8 戈保梁,张晋禄,王显强,等.云南某铜选厂尾矿再选试验[J].金属矿山,2016,45(2):176-180.
Ge Baoliang,Zhang Jinlu,Wang Xianqiang,et al.Experiment on reconcentration of tailings from a copper plant in Yunnan[J].Metal Mine,2016,45(2):176-180.
9 刘瑜,杨昊,邹春林,等.精确化磨矿对产品粒度分布及能耗的影响[J].矿业研究与开发,2015(7):53-57.
Liu Yu,Yang Hao,Zou Chunlin,et al.Influence of accurate grinding on product size distribution and energy consumption[J].Mining Research and Development,2015(7):53-57.
10 雷小莉,李金泉,徐忠敏,等.精确化装补球技术在金翅岭金矿选矿厂的应用[J].黄金科学技术,2015,23(6):87-91.
Lei Xiaoli,Li Jinquan,Xu Zhongmin,et al.Application of the technology of accurate ball loading and addition in concentrating mill of Jinchiling gold mine[J].Gold Science and Technology,2015,23(6):87-91.
11 程旭,武豪杰,王泽红.介质制度对磨矿过程影响的研究进展[J].金属矿山,2013,42(9):104-107.
Cheng Xu,Wu Haojie,Wang Zehong.The research progress of effect on grinding media system on grinding process[J].Metal Mine,2013,42(9):104-107.
12 Li G P,Chen W,Sun L H,et al.The influence of cylindrical grinding medium on particle size and mechanical properties of TiC steel bonded carbide[J].Materials Science Forum,2016,849:781-787.
13 吴琼,柏杨,张加官,等.球磨机磨球冲击物料过程特性分析[J].矿山机械,2014,42(1):68-72.
Wu Qiong,Bai Yang,Zhang Jiaguan,et al.Characteristic analysis on process of grinding ball impacting charge in ball mill[J].Mining & Processing Equipment,2014,42(1):68-72.
14 金弢,李若兰,郭永杰.钢锻在磷矿磨矿中的应用研究[J].化工矿物与加工,2014(10):18-22.
Jin Tao,Li Ruolan,Guo Yongjie.Application of forged steel in phosphate grinding.[J].Industrial Minerals and Processing,2014(10):18-22.
15 王文军,肖庆飞,康怀斌,等.短圆柱型磨矿介质用于新疆星塔金矿二锻磨矿的试验研究[J].黄金,2016,37(5):55-58.
Wang Wenjun,Xiao Qingfei,Kang Huaibin,et al.Experimental study on short cylindrical grinding media being applied in the second-stage grinding at Xingta gold mine,Xinjiang[J].Gold,2016,37(5):55-58.
16 Xiao Q F,Li B,Kang H B.The effect of fine grinding medium feature on grinding results[J].Aasri Procedia,2014,7:120-125.
17 崔瑞,刘昕,张义闹,等.球磨机钢球球径制度对磨碎速率的影响研究[J].矿冶工程,2019,39(1):39-43, 48.
Cui Rui,Liu Xin,Zhang Yinao,et al.Effect of diameter regime of ball charge on grinding rate in ball mill[J].Mining and Metallurgical Engineering,2019,39(1):39-43,48.
18 王泽红,高伟,刘高峰.太钢尖山铁矿一段磨机介质优化研究[J].金属矿山,2019,48(9):102-106.
Wang Zehong,Gao Wei,Liu Gaofeng.Research on grinding medium optimization for the primary mill in Jianshan iron mine of TISCO[J].Metal Mine,2019,48(9):102-106.
19 廖银英,杨远坤,曾继敏,等.某选矿厂MQY5064球磨机磨矿产能优化研究[J].有色金属(选矿部分),2016(6):69-71.
Liao Yinying,Yang Yuankun,Zeng Jimin,et al.Study on promoting capacity of the MQY5064 ball mill used in a ore-dressing plant[J].Nonferrous Metals (Mineral Processing Section),2016(6):69-71.
20 范保建,佐太东,庞玉明,等.溢流型球磨机产能优化改造及应用[J].黄金,2017,38(9):52-57.
Fan Baojian,Zuo Taidong,Pang Yuming,et al.Productivity optimization of overflow ball mill and its application [J].Gold,2017,38(9):52-57.
21 朱月锋,朱潇.优化钢球级配改善适宜浮选粒级组成的研究[J].矿山机械,2019,47(6):33-36.
Zhu Yuefeng,Zhu Xiao.Research on optimization of size proportion of grinding balls for improvement of particle size suitable for flotation[J].Mining & Processing Equipment,2019,47(6):33-36.
22 路和,戴丽莉,姚荣斌,等.球磨机研磨介质冲击特性和碰撞能量分布特性研究[J].有色金属(选矿部分),2018(6):77-81.
Lu He,Dai Lili,Yao Rongbin,et al.Analysis of impact characteristic and collision energy distribution of grinding media [J].Nonferrous Metals (Mineral Processing Section),2018(6):77-81.
23 钟旭群.介质配比对磨矿效果影响的试验研究[J].矿冶,2014,23(5):24-26,43.
Zhong Xuqun.Experimental study on influence of medium size distribution on the grinding performances[J].Mining and Metallurgy,2014,23(5):24-26,43.
24 严刘学.提高梅山铁矿磨矿产品粒度均匀性的试验研究[J].金属矿山,2014,43(8):61-64.
Yan Liuxue.Increasing granular uniformity of grinding product from Meishan iron mine[J].Metal Mine,2014,43(8):61-64.
25 Cleary P W.A multiscale method for including fine particle effects in DEM models of grinding mills[J].Minerals Engineering,2015,84:88-99.
[1] 谢也真,曹平,陈昊然. 滥泥坪铜矿三维地应力测量及巷道布置优化研究[J]. 黄金科学技术, 2019, 27(6): 862-870.
[2] 黄胤淇,肖庆飞,郭运鑫,王旭东. 江西某铜矿磨矿对比试验及应用研究[J]. 黄金科学技术, 2019, 27(2): 278-284.
[3] 刘学龙,杨富成,张昌振,罗应,王帅帅. 滇西北雪鸡坪斑岩型铜矿构造特征与成矿作用研究[J]. 黄金科学技术, 2018, 26(4): 473-480.
[4] 潘颢丹,杨洪英2,佟琳琳,李承卓,杜世麟,韩馨怡,韩爽. 初始pH值对ASH-07细菌生长和黄铜矿浸出过程的影响[J]. 黄金科学技术, 2018, 26(1): 115-123.
[5] 丘学民,陈国宝*,张勤,杨洪英. 从超细粒高铅锌氰化尾渣中浮选回收有价金属的试验研究[J]. 黄金科学技术, 2017, 25(6): 61-67.
[6] 雷阿丽,吴彩斌,叶景胜,江领培,倪帅男,何水春. 顽石作磨矿介质下含金铜硫矿的磨矿规律研究[J]. 黄金科学技术, 2017, 25(1): 121-126.
[7] 薛兰花,史老虎,张志军,沈柳生. 新疆卡拉盖雷铜矿隐爆角砾岩地质特征及控矿作用[J]. 黄金科学技术, 2016, 24(1): 23-27.
[8] 陈道前,傅开彬,董发勤,胡如权,邓全淋,徐龙华,张亚龙,杨永强. 四川里伍铜矿多金属低品位尾矿工艺矿物学研究[J]. 黄金科学技术, 2015, 23(6): 70-74.
[9] 李玉芹,聂秀丽,王学贞,梁启军,苏士星,刘福运. 新疆准噶尔盆地西北缘布兰萨拉金铜矿地质特征及找矿方向探讨[J]. 黄金科学技术, 2015, 23(6): 17-22.
[10] 文鹏,杨永强,王传亮,刘怀金,辛江. 江西德兴富家坞铜矿床中金银铼钴分布规律[J]. 黄金科学技术, 2015, 23(2): 17-27.
[11] 潘美慧,贾志磊,侯鹏博. 南祁连化石沟铜矿区上石炭统克鲁克组大理岩C、O同位素特征[J]. 黄金科学技术, 2014, 22(5): 39-44.
[12] 吴彩斌,刘瑜,周意超,周斌,杨昊,鄢发明,邹春林. 低金高硫铜矿石回收金选矿试验研究[J]. 黄金科学技术, 2014, 22(5): 74-78.
[13] 郑锡联,黄思捷,魏转花. 某低品位混合铜矿选矿试验研究[J]. 黄金科学技术, 2013, 21(5): 71-75.
[14] 李文龙,庞保成,蓝妮拉,肖海. 冀西北地区铜地球化学块体特征及资源潜力预测[J]. 黄金科学技术, 2013, 21(3): 32-37.
[15] 甘长福,祁顺萍,米生花. 青海哈茨谱山南铜矿地质特征及成因分析[J]. J4, 2012, 20(4): 141-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李淑芳, 于永安, 朝银银, 王美娟, 张岱, 刘君, 孙亮亮. 在辽东成矿带找寻层控型金矿床靶区[J]. J4, 2010, 18(3): 59 -62 .
[2] 王大平, 宋丙剑, 韦库明. 大功率激电测量在辽宁北水泉寻找隐伏矿床的应用[J]. J4, 2010, 18(3): 76 -78 .
[3] 傅星. 青海绿梁山地区金矿床地质特征及成矿条件浅析[J]. J4, 2010, 18(4): 54 -57 .
[4] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[5] 陈力子, 曹东宏, 杨登美. 陕西金龙山金矿古楼山矿段元素地球化学特征[J]. J4, 2011, 19(1): 28 -33 .
[6] 张华全,张维昕,李洪杰. 山东胶莱盆地金矿成矿条件及找矿方向[J]. J4, 2008, 16(2): 12 -17 .
[7] 杨明荣, 牟长贤. 原子荧光法测定化探样品中砷和锑的不确定度评定[J]. J4, 2010, 18(3): 68 -71 .
[8] 原冬成, 徐小凤. 山东曹家埠金矿床的成矿机理与找矿前景[J]. J4, 2010, 18(4): 47 -49 .
[9] 刘远华, 杨贵才, 张轮, 齐金忠, 李文良. 西秦岭阳山超大型金矿床花岗岩岩石地球化学特征[J]. J4, 2010, 18(6): 1 -7 .
[10] 宋贺民, 冯喜利, 丁宪华. 太行山北段交界口矿区地质地球化学特征及找矿方向[J]. J4, 2010, 18(3): 54 -58 .