img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (4): 595-602.doi: 10.11872/j.issn.1005-2518.2020.04.170

• 采选技术与矿山管理 • 上一篇    下一篇

脉冲微波助磨工艺参数对钛铁矿升温性能的影响研究

侯明1,4(),李军1,4,杨黎1,2,4,范培强5,郭胜惠1,2,3,4(),严妍1,4   

  1. 1.昆明理工大学冶金与能源工程学院,云南 昆明 650093
    2.国家超硬材料先进制备技术国际联合研究中心,云南 昆明 650093
    3.微波能工程应用和装备技术国家地方联合工程实验室,云南 昆明 650093
    4.复杂有色金属资源清洁利用国家重点实验室,云南 昆明 650093
    5.云南磷化集团有限公司,云南 昆明 650600
  • 收稿日期:2019-10-22 修回日期:2020-03-26 出版日期:2020-08-31 发布日期:2020-08-27
  • 通讯作者: 郭胜惠 E-mail:houmingkmust@163.com;1978327655@qq.com
  • 作者简介:侯明(1995-),男,辽宁锦州人,博士研究生,从事微波选矿和超硬材料制备研究工作。houmingkmust@163.com
  • 基金资助:
    国家自然科学基金项目“高功率脉冲微波场中矿物强化解离行为研究”(51664035);“微波—流场耦合强化软锰矿湿法还原浸出的基础研究”(U1802255);云南省应用基础研究计划“微波等离子体CVD制备金刚石膜基础研究”(2018FA029);云南省杰出青年基金“沉积金刚石膜的生长调控机制”(2019FJ006MPCVD);云南省“万人计划”青年拔尖人才专项(YNWRQNBJ-2018-311)

Study of Effect of Pulsed Microwave Assisted Grinding Process Parameters on the Ilmenite Heating Performance

Ming HOU1,4(),Jun LI1,4,Li YANG1,2,4,Peiqiang FAN5,Shenghui GUO1,2,3,4(),Yan YAN1,4   

  1. 1.Faculty of Metallurgical and Energy Engineering,Kunming University of Science and Technology,Kunming 650093,Yunnan,China
    2.State International Joint Research Center of Advanced Technology for Superhard Materials,Kunming University of Science and Technology,Kunming 650093,Yunnan,China
    3.National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology,Kunming University of Science and Technology,Kunming 650093,Yunnan,China
    4.State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming University of Science and Technology,Kunming 650093,Yunnan,China
    5.Yunnan Phosphate Group Co. ,Ltd. ,Kunming 650600,Yunnan,China
  • Received:2019-10-22 Revised:2020-03-26 Online:2020-08-31 Published:2020-08-27
  • Contact: Shenghui GUO E-mail:houmingkmust@163.com;1978327655@qq.com

摘要:

为了提高钛铁矿回收效率,对钛铁矿在脉冲微波条件下的升温行为进行了研究,采用自制的脉冲微波设备,对钛铁矿进行脉冲微波预处理。研究了不同辐照时间、脉冲微波功率、矿样质量和不同矿样粒度对钛铁矿升温性能的影响。采用X射线衍射仪对矿样组成进行分析,利用激光粒度仪对样品粒度进行检测。研究结果表明:物料在微波场中的升温行为,既决定于矿物本身的性质,又与微波加热设备的功率密切相关。当矿样粒度为25 mm、质量为40 g、辐照时间为30 s、微波平均功率为3 kW时,样品的升温性能最好。该研究对脉冲微波在助磨领域的应用具有重要意义。

关键词: 脉冲微波, 钛铁矿, 升温性能, 工艺参数, 辐照时间, 助磨技术

Abstract:

Because of its light weight,high strength,and good corrosion resistance,the development and application of titanium have attracted widespread attention from Chinese and foreign scholars.The higher the content,the lower the grade of titanium concentrate that can be recovered,and it is difficult to improve the recovery rate.In order to improve the recovery efficiency of ilmenite,the heating behavior of ilmenite under pulsed microwave conditions was studied.In this study,pulsed microwave pretreatment of ilmenite was carried out using a self-made pulsed microwave device.The effects of different irradiation time,pulse microwave power,weight of ore sample and particle size of different ore samples on the heating performance of ilmenite were studied.The composition of the ore sample was analyzed by X-ray diffractometer,and the particle size of the sample was detected by a nano-laser particle size analyzer.The research results show that the heating behavior of materials in the microwave field is determined not only by the nature of the mineral itself,but also by the power of the microwave heating equipment.The temperature increase rate of ilmenite is significantly affected by the quality of the sample.At the same time,the change law shows consistency under different heating time conditions:When the mass of ilmenite is 40~60 g,the temperature increase rate reaches the maximum.The changes in the quality of ilmenite can significantly affect the heating temperature of the ore sample.Under the condition of a certain microwave power,the longer the microwave acts on the material,the higher the temperature of the ore sample.With the change of the particle size of the material,the microwave temperature showes a trend of increasing first and then decreasing.When the ore sample has a particle size of 25 mm,a weight of 40 g,an irradiation time of 30 s,and an average microwave power of 3 kW,the sample is heated to the best effect.The research in this paper is of great significance for the application of pulsed microwave in the field of grinding aid.

Key words: pulsed microwave, ilmenite, heating performance, process parameters, irradiation time, grinding aid technology

中图分类号: 

  • TD951

表1

钛铁矿矿物组成"

矿物成分质量分数矿物成分质量分数
TiO252.86MgO2.01
Fe35.12SiO21.86
CaO3.22其他4.93

图1

50 g矿物2 min内升温曲线"

图2

不同物料量在不同加热时间内升温曲线"

图3

微波功率对加热温度的影响"

图4

40,50,60 g物料一分钟内升温曲线"

表 2

不同粒度矿样的微波加热温度"

粒度/mm温度/℃粒度/mm温度/℃
224335280
1026545238
25300

表3

试验条件与结果汇总"

温度/℃试验条件温度/℃试验条件
辐照时间/s脉冲微波功率/W矿样质量/g矿样粒度/mm辐照时间/s脉冲微波功率/W矿样质量/g矿样粒度/mm
150101 0005025175301 0005025
240201 0005025250301 5005025
300301 0005025270302 0005025
330401 0005025305302 5005025
350501 0005025330303 0005025
370601 0005025155101 0004025
386701 0005025242201 0004025
398801 0005025320301 0004025
409901 0005025360401 0004025
4201001 0005025380501 0004025
4291101 0005025400601 0004025
4401201 0005025150101 0005025
90101 0002025240201 0005025
168101 0004025300301 0005025
170101 0006025326401 0005025
132101 0008025352501 0005025
95101 00010025370601 0005025
182201 0002025140101 0006025
256201 0004025234201 0006025
248201 0006025308301 0006025
185201 0008025326401 0006025
145201 00010025352501 0006025
250301 0002025360601 0006025
320301 0004025243301 000502
295301 0006025265301 0005010
210301 0008025300301 0005025
176301 00010025280301 0005035
253005025238301 0005045
110305005025
1 中国工程院.中国科学院《两院咨询报告》[M].北京:中国工程院,2012.
Chinese Academy of Engineering.Chinese Academy of Sciences.Consultation Report of Two Academy[M].Beijing:Chinese Academy of Engineering,2012.
2 杨欢,杨晓康,杜晨,等.钛及钛合金真空熔炼技术研究进展[J].世界有色金属,2019(8):1-4.
Yang Huan,Yang Xiaokang,Du Chen,et al.Recent development in researching the advanced melting processes for titanium alloy[J].World Nonferrous Metals,2019(8):1-4.
3 张喜燕,赵永庆,白晨光,等.钛合金及应用[J].北京:化工出版社,2005.
Zhang Xiyan,Zhao Yongqing,Bai Chenguang,et al.Titanium Alloy and Application[M].Beijing:Chemical Industry Press,2005.
4 朱阳戈,张国范,冯其明,等.微细粒钛铁矿的自载体浮选[J].中国有色金属学报,2009,19(3):554-560.
Zhu Yangge,Zhang Guofan,Feng Qiming,et al.Autogenous-carrier flotation of fine ilmenite[J].The Chinese Journal of Nonferrous Metals,2009,19(3):554-560.
5 杨佳,李奎,汤爱涛,等.钛铁矿资源综合利用现状与发展[J].材料导报,2003,17(8):44-46.
Yang Jia,Li Kui,Tang Aitao,et al.Comprehensive utilization of ilmenite resources present status and future prospects [J].Materials Review,2003,17(8):44-46.
6 黄会春.提高太和铁矿钛强磁选回收率的试验研究[J].金属矿山,2011,40(2):60-63.
Huang Huichun.Experimental research on titanium recovery rate in high intensity magnetic separation of Taihe iron mine [J].Metal Mine,2011,40(2):60-63.
7 李丽匣,申帅平,袁致涛,等.微细粒钛铁矿磁选回收率低原因分析[J].中国矿业,2018,27(11):141-147.
Li Lixia,Shen Shuaiping,Yuan Zhitao,et al.Loss mechanism of fine-grained ilmenite in magnetic separation [J].China Mining Magazine,2018,27(11):141-147.
8 常富强,段德华,宋龒. 生产中提高球磨机磨矿效率的方法[J]. 现代矿业,2011,27(3):81-84.
Chang Fuqiang, Duan Dehua, Song Long. Methods of improving grinding efficiency of ball mill in production [J]. Modern Mining, 2011,27(3):81-84.
9 王俊鹏,姜涛,刘亚静,等.微波预处理对钒钛磁铁矿磨矿动力学的影响[J].东北大学学报(自然科学版),2019,40(5):663-667.
Wang Junpeng,Jiang Tao,Liu Yajing,et al.Effects of microwave pretreatment on the grinding kinetics of vanadium titano-magnetite [J].Journal of Northeastern University(Natural Science),2019,40(5):663-667.
10 Mcgill S L,Walkiewicz J W,Smyres G A.The effect of power level on microwave heating of selected chemicals and minerals[J].Mrs Online Proceedings Library Archive,1988,124:247-252.
11 Walkiewicz J W,Kazonich G,Mcgill S L.Microwave heating characteristics of minerals and compounds[J].Minerals and Metallurgical Processing,1988,5(1):39-42.
12 Walkiewicz J W,Clark A E,McGill S L.Microwave-Assisted Grinding[J].IEEE Transactions on Industry Applications,1991(2):239-243.
13 廖雪峰,刘钱钱,胡途.响应曲面法优化钛铁矿微波辅助磨矿研究[J].矿产保护与利用,2016(3):40-44.
Liao Xuefeng,Liu Qianqian,Hu Tu.Experimental investigation on microwave assisted grinding of ilmenite optimized by response surface method [J].Conservation and Utilization of Mineral Resources,2016(3):40-44.
14 刘全军,熊燕琴.微波在铁矿石选择性磨细中的应用机理研究[J].云南冶金,1997,26(3):25-28.
Liu Quanjun,Xiong Yanqin.Research on application mechanism of microwave in selective grinding of iron ore [J].Yunnan Metallurgy,1997,26(3):25-28.
15 赵伟,周安宁.微波辅助磨矿对煤岩组分解离的影响[J].煤炭学报,2011,36(1):140-144.
Zhao Wei,Zhou Anning.The influence of microwave-assisted grinding on coal macerals dissociation[J].Journal of China Coal Society,2011,36(1):140-144.
16 王俊鹏,姜涛,刘亚静,等.钒钛磁铁矿微波助磨实验[J].东北大学学报(自然科学版),2017,38(11):1559-1563.
Wang Junpeng,Jiang Tao,Liu Yajing,et al.Experiment of microwave-assisted grinding on vanadium titano-magnetite [J].Journal of Northeastern University(Natural Science),2017,38(11):1559-1563.
17 白立记,苏秀娟,何春林,等.锡石多金属硫化矿微波辅助磨矿机理研究[J].矿产保护与利用,2018(6):31-36.
Bai Liji,Su Xiujuan,He Chunlin,et al.Study on microwave-assisted grinding mechanism of cassiterite-polymetallic sulfide ore [J].Conservation and Utilization of Mineral Resources,2018(6):31-36.
18 张九才.大功率脉冲微波功率频率计研究[D].成都:电子科技大学,2006.
Zhang Jiucai.Research on High Power Pulsed Microwave Power Frequency Meter[D].Chengdu:University of Ele-ctronic Science and Technology of China,2006.
19 刘全军,陈景河.微波助磨与微波助浸技术[M].北京:冶金工业出版社,2005
Liu Quanjun,Chen Jinghe.Microwave Assisted Grinding and Microwave Assisted Immersion Technology[M].Beijing:Metallurgical Industry Press,2005.
20 赵俊蔚,郑晔,邢志军.微波处理碳质金矿石技术研究[J].黄金,2008,29(3):35-38.
Zhao Junwei,Zheng Ye,Xing Zhijun.Researches on carbon-bearing gold ore treatment with microwave[J].Gold,2008,29(3):35-38.
21 彭金辉,杨显万.微波能技术新应用[M].昆明:云南科技出版社,1997.
Peng Jinhui,Yang Xianwan.New Applications of Microwave Energy Technology [M].Kunming:Yunnan Science and Technology Press,1997.
22 Whittles D N,Kingman S W,Reddish D J.Application of numerical modelling for prediction of the influence of power density on microwave-assisted breakage[J].International Journal of Mineral Processing,2003,68(1/2/3/4):71-91.
23 Jones D A, Kingman S W, Whittles D N,et al.The influence of microwave energy delivery method on strength reduction in ore samples[J].Chemical Engineering and Processing,2007,46(4):291-299.
[1] 许涛,衷水平,殷志刚. 碱性环境中黄铁矿表面反应机理研究[J]. 黄金科学技术, 2014, 22(4): 72-77.
[2] 陈庚琦. 某含金铁矿石选矿试验研究[J]. 黄金科学技术, 2012, 20(5): 74-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 原冬成, 徐小凤. 山东曹家埠金矿床的成矿机理与找矿前景[J]. J4, 2010, 18(4): 47 -49 .
[2] 刘远华, 杨贵才, 张轮, 齐金忠, 李文良. 西秦岭阳山超大型金矿床花岗岩岩石地球化学特征[J]. J4, 2010, 18(6): 1 -7 .
[3] 耿阿乔, 段建华. 青海满丈岗金矿控矿因素及找矿靶区分析[J]. J4, 2010, 18(6): 34 -37 .
[4] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[5] 苏建华, 陆树林. 从高酸低浓度尾液中萃取金的试验[J]. J4, 2010, 18(3): 72 -75 .
[6] 陈力子, 曹东宏, 杨登美. 陕西金龙山金矿古楼山矿段元素地球化学特征[J]. J4, 2011, 19(1): 28 -33 .
[7] 侯刚, 于兆财, 王爱平. 夹皮沟金矿本区矿床地质特征及其找矿意义[J]. J4, 2011, 19(1): 45 -48 .
[8] 徐忠敏,庄宇凯,栾作春. 部分正交析因法在浮选流程优化试验中的应用[J]. J4, 2008, 16(1): 7 -11 .
[9] 董传统,杨增武,赵清泉. 黑龙江省金场沟铜钼金矿地电特征及找矿模式[J]. J4, 2008, 16(1): 39 -42 .
[10] 李淑芳, 于永安, 朝银银, 王美娟, 张岱, 刘君, 孙亮亮. 在辽东成矿带找寻层控型金矿床靶区[J]. J4, 2010, 18(3): 59 -62 .