img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (4): 509-520.doi: 10.11872/j.issn.1005-2518.2020.04.029

• 采选技术与矿山管理 • 上一篇    下一篇

十字交叉裂隙扩展机理试验与数值模拟研究

贺桂成1(),陈科旭1,2,戴兵1,2(),王程程1   

  1. 1.南华大学资源环境与安全工程学院,湖南 衡阳 421000
    2.山东黄金集团有限公司深井开采实验室,山东 烟台 261442
  • 收稿日期:2020-01-02 修回日期:2020-05-21 出版日期:2020-08-31 发布日期:2020-08-27
  • 通讯作者: 戴兵 E-mail:Hegc9210@163.com;daibingusc@usc.edu.cn
  • 作者简介:贺桂成(1977-),男,湖南衡阳人,副教授,从事岩土工程灾害预测与控制方面的教学与科研工作。Hegc9210@163.com
  • 基金资助:
    国家自然科学基金项目“微生物胶结砂岩型地浸铀矿山隔水层的抗渗性能试验及机理研究”(51974163);湖南省教育厅重点科研基金“微波照射花岗岩型铀矿石热—力耦合作用机理及热裂断裂机制研究”(18A248)

Experimental Study and Numerical Simulation Analysis of Crack Propagation Characteristics of Crisscross Fracture

Guicheng HE1(),Kexu CHEN1,2,Bing DAI1,2(),Chengcheng WANG1   

  1. 1.School of Resource Environment and Safety Engineering,University of South China,Hengyang 421000,Hunan,China
    2.Deep Mining Laboratory of Shandong Gold Group Co. ,Ltd. ,Yantai 261442,Shandong,China
  • Received:2020-01-02 Revised:2020-05-21 Online:2020-08-31 Published:2020-08-27
  • Contact: Bing DAI E-mail:Hegc9210@163.com;daibingusc@usc.edu.cn

摘要:

岩石内部微裂隙的起裂贯通破坏易引发边坡滑坡、隧道塌方和采场冒顶等工程事故,造成巨大的经济损失和恶劣的社会影响。为了探究裂隙岩石中裂隙演化规律及破坏机理,根据相似理论,采用细沙、白水泥和水按一定比例制作含十字交叉裂隙的类岩石试样,利用RMT-150B岩石力学试验机对其进行单轴压缩试验,并基于室内试验测试结果,建立了含预制十字交叉裂隙岩石试样的PFC数值模拟模型,分析含十字交叉裂隙试样的裂纹起裂、扩展和贯通的演化规律及其失稳破坏机理。研究结果表明:含十字交叉裂隙试样的峰值强度和弹性模量低于完整试样;数值模拟结果的峰值强度、弹性模量、起裂应力和裂隙倾角的变化关系与室内试验测试结果的变化关系基本吻合,即随着裂隙倾角的增大呈现先增大后减小的倒“V”形变化趋势;裂隙倾角为0°时微裂纹起裂于主次裂隙尖端,裂隙倾角为30°时裂纹起裂于主裂隙尖端,裂隙倾角为45°和60°时裂纹起裂于次裂隙尖端;微裂纹数量随应变增加经历了静止期、增加缓慢期、中期增加期和最活跃期4个阶段,且后一阶段增长率总是高于前一阶段;裂隙倾角为0°、30°、45°和60°时试样的破坏模式均为对角剪切破坏。

关键词: 十字交叉裂隙, 类岩石材料, 数值模拟, 裂纹演化, 微裂纹数量, 剪切破坏

Abstract:

Defects in rocks make their physical properties anisotropic.When subjected to external force,the defect will crack,expand and even destroy.Therefore,it is very important to study its failure behavior to predict the instability of engineering structure.Previous studies are more concentrated on the evolution process of single fracture or non intersecting multi fracture,however,rock fracture often exists in the form of intersecting multi fracture in practical engineering.Based on RMT-150B,the cross fracture rock samples (150 mm×200 mm×45 mm) with different fracture inclination were prepared in the laboratory,and the uniaxial compression test was carried out with the displacement controlled loading mode of 0.01 mm/s.The results show that the peak strength and modulus of elasticity of the cross fracture specimen are lower than that of the intact specimen.The peak strength,modulus of elasticity and crack initiation stress increase first and then decrease with the increase of fracture inclination.In order to make up for the shortcomings of laboratory test technology in reflecting the macro and micro morphology of cross cracks,PFC2D numerical simulation technology was used to calibrate the micro parameters of the numerical model by comparing the deformation and failure characteristics of the complete specimen.The results of numerical simulation show that the relationship between peak strength,modulus of elasticity,initial crack stress and crack inclination is basically consistent with the results of laboratory tests.From the process of crack evolution,it is observed that the inclination angle of 0° is the simultaneous cracking from the tip of the primary and secondary cracks,the inclination angle of 30° is the crack initiation from the tip of the primary crack,and the inclination angle of 45° and 60° are the cracks from the tip of the secondary crack.The number curves of microcracks are divided into four stages,namely quiescent period, slow increase period, mid-term increase period, and most active period,and the growth rate of the latter stage is always higher than that of the former stage,the change characteristics of cracks are different in different stages.It can be clearly seen from the displacement field that when the inclination angles are 0°,30° and 45°respectively,the specimen is the diagonal shear failure controlled by the secondary fracture.When the inclination angle is 60°,the specimen is mainly the shear failure controlled by the main fracture.

Key words: crisscross fracture, rock-like specimen, numerical simulation, fracture propagation, the number of microcracks, shear failure

中图分类号: 

  • TU45

表1

完整试样的力学参数"

参数数值参数数值
密度ρ/(kg·m-31 999黏聚力C/MPa3.98
抗压强度σc/MPa23.6泊松比ν0.29
抗拉强度σt/MPa3.44内摩擦角ψ/(°)36.2
弹性模量E/GPa43.14

图1

十字交叉裂隙试件模型2a为主裂隙长度;2b为次裂隙长度;α为主裂隙与竖轴夹角"

图2

改装后的RMT-150B伺服控制试验机"

图3

完整试块试验和数值模拟受压破坏形态对比"

表2

完整试样PFC细观参数"

参数取值参数取值
颗粒密度/(kg·m-31 999颗粒摩擦因子0.3
最小颗粒半径/mm0.4平行黏结拉伸应力/MPa14±1
最大颗粒半径/mm0.5平行黏结黏聚力/MPa8.5±0.5
颗粒刚度比1.9平行黏结拉伸摩擦角/(°)36.2
平行黏结刚度比1.9

图4

裂隙体数值分析模型和微观接触图"

图5

不同裂隙倾角下试验和数值模拟的应力—应变曲线对比"

图6

峰值强度随裂隙倾角变化曲线"

图7

裂隙倾角对十字交叉裂隙试样变形参数影响"

图8

裂纹起裂应力与裂隙倾角的关系"

图9

不同裂隙倾角下PFC中试样的破坏过程图和试验破坏图注:1、4、5为宏观或远场裂纹编号;1a、4b等为微裂纹编号;图中B-11.57 MPa表示加载到B点所对应的应力为11.57 MPa,其余依此类推"

图10

不同倾角下微裂纹数量随应变的变化曲线注:A~E表示应力加载到某一点;Ⅰ~Ⅳ表示静止期、增加缓慢期、中期增加期和最活跃期"

图11

PFC中不同倾角下试样破坏后的主位移、水平位移和竖向位移注:1~3为裂纹编号"

1 钱七虎.地下工程建设安全面临的挑战与对策[J].岩石力学与工程报,2012,31(10):1945-1956.
Qian Qihu.Challenges faced by underground projects construction safety and countermeasures[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(10):1945-1956.
2 Brace W F,Byerlee J D.Recent experimental studies of brittle fracture rocks[C]//Proeeedings of the Eighth U. S. Symposium on Rock Mechanics.Minnesota:American Rock Mechanics Assonciation,1967:57-81.
3 Wong L N Y,Einstein H H.Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression[J].International Journal of Rock Mechanics and Mining Sciences,2009,46(2):239-249.
4 蒲成志,曹平,陈瑜,等.不同裂隙相对张开度下类岩石材料断裂试验与破坏机理[J].中南大学学报(自然科学版),2011,42(8):2394-2399.
Pu Chengzhi,Cao Ping,Chen Yu,et al.Fracture test and failure mechanism of rock-like material of relatively different fracture apertures[J].Journal of Central South University(Science and Technology),2011,42(8):2394-2399.
5 张国凯,李海波,王明洋,等.基于声学测试和摄像技术的单裂隙岩石裂纹扩展特征研究[J].岩土力学,2019,40(增1):63-72,81.
Zhang Guokai,Li Haibo,Wang Mingyang,et al.Crack propagation characteristics in rocks containing single fissure based on acoustic testing and camera technique[J].Rock and Soil Mechanics,2019,40(Supp.1):63-72,81.
6 Haeri H,Shahriar K,Marji M F,et al.Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks[J].International Journal of Rock Mechanics and Mining Sciences,2014,67(4):20-28.
7 黄彦华,杨圣奇.断续三裂隙砂岩单轴压缩裂纹扩展特征颗粒流分析[J].应用基础与工程科学学报,2016,24(6):1232-1246.
Huang Yanhua,Yang Shengqi.Particle flow analysis on crack coalescence behavior of sandstone specimen containing three pre-existing fissures under uniaxial compression[J].Journal of Basic Science and Engineering,2016,24(6):1232-1247.
8 Lee J,Hong J W,Jung J W.The mechanism of fracture coalescence in pre-cracked rock-type material with three flaws[J].Engineering Geology,2017,223:31-47.
9 Yang S Q.Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure[J].Engineering Fracture Mechanics,2011,78(17):3059-3081.
10 Zhou X P,Cheng H,Feng Y F.An experimental study of crack coalescence behaviour in rock-like materials containing multiple flaws under uniaxial compression[J].Rock Mechanics and Rock Engineering,2014,47:1961-1986.
11 黄彦华,杨圣奇,鞠杨,等.断续裂隙类岩石材料三轴压缩力学特性试验研究[J].岩土工程学报,2016,38(7):1212-1220.
Huang Yanhua,Yang Shengqi,Ju Yang,et al.Experimental study on mechanical behavior of rock-like materials containing pre-existing intermittent fissures under triaxial compression[J].Chinese Journal of Geotechnical Mecha-nics and Engineering,2016,38(7):1212-1220.
12 杨圣奇,黄彦华,温森.高温后非共面双裂隙红砂岩力学特性试验研究[J].岩石力学与工程学报,2015,34(3):440-451.
Yang Shengqi,Huang Yanhua,Wen Sen.Experimental study of mechanical behavior of red sandstone with two non-coplanar fissures after high temperature heating[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(3):440-451.
13 范祥,谢永利,来弘鹏,等.含两条节理岩样压缩破坏行为的颗粒流模拟[J].地下空间与工程学报,2018,14(2):461-469.
Fan Xiang,Xie Yongli,Lai Hongpeng,et al.Numerical simulation of failure behavior of specimens with two flaws under compressive loading using PFC[J].Chinese Journal of Underground Space and Engineering,2018,14(2):461-469.
14 Huang Y H,Yang S Q,Ranjith P G,et al.Strength failure behavior and crack evolution mechanism of granite containing pre-existing non-coplanar holes:Experimental stu-dy and particle flow modeling[J].Computers and Geotechnics,2017,88:182-198.
15 Sun W B,Du H Q,Shao J L,et al.Numerical Analysis of Crack Propagation Evolution of Specimens with Different Dip Angles of Cross Fractures[J].Geotechnical and Geological Engineering,2019,37:3379-3386.
16 田文岭,杨圣奇,黄彦华.不同围压下共面双裂隙脆性砂岩裂纹演化特性颗粒流模拟研究[J].采矿与安全工程学报,2017,34(6):1207-1215.
Tian Wenling,Yang Shengqi,Huang Yanhua.PFC2D simulation on crack evolution behavior of brittle sandstone containing two coplanar fissures under different confining pressures[J].Journal of Mining and Safety Engineering,2017,34(6):1207-1215.
17 李勇,蔡卫兵,朱维申,等.单轴压缩条件下平行双裂隙演化机理的颗粒流分析[J].中南大学学报(自然科学版),2019,50(12):3035-3045.
Li Yong,Cai Weibing,Zhu Weishen,et al.Particle flow analysis of parallel double crack evolution under uniaxial compression[J].Journal of Central South University(Sc-ience and Technology),2019,50(12):3035-3045.
18 Cao Ping,Liu Taoying,Pu Chengzhi,et al.Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression[J].Engineering Geology,2015,187:113-121.
19 张波,李术才,杨学英,等.含交叉多裂隙类岩石材料单轴压缩力学性能研究[J].岩石力学与工程学报,2015,34(9):1777-1785.
Zhang Bo,Li Shucai,Yang Xueying,et al.Mechanical property of rock-like material with intersecting multi-flaws under uniaxial compression[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(9):1777-1785.
20 张波,李术才,杨学英,等.含交叉裂隙节理岩体单轴压缩破坏机制研究[J].岩土力学,2014,35(7):1863-1870.
Zhang Bo,Li Shucai,Yang Xueying,et al.Uniaxial compression failure mechanism of jointed rock mass with cross-cracks[J].Rock and Soil Mechanics,2014,35(7):1863-1870.
21 张波,杨学英,李术才,等.含两组叠置X型裂隙类岩石材料单轴拉伸破坏特征[J].煤炭学报,2017,42(8):1987-1993.
Zhang Bo,Yang Xueying,Li Shucai,et al.Uniaxial tensile failure properties of rock-like specimens with two overlapped X-type flaws[J].Journal of China Coal Society,2017,42(8):1987-1993.
22 罗可,招国栋,曾佳君,等.加载速率影响的含裂隙类岩石材料破断试验与数值模拟[J].岩石力学与工程学报,2018,37(8):1833-1842.
Luo Ke,Zhao Guodong,Zeng Jiajun,et al.Fracture experiments and numerical simulation of cracked body in rock-like materials affected by loading rate[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(8):1833-1842.
23 蒲成志,曹平,衣永亮.单轴压缩下预制2条贯通裂隙类岩材料断裂行为[J].中南大学学报(自然科学版),2012,43(7):2708-2715.
Pu Chengzhi,Cao Ping,Yi Yongliang.Fracture for rock-like materials with two transfixion fissures under uniaxial compression[J].Journal of Central South University(Science and Technology),2012,43(7):2708 -2715.
24 王宇,李晓,武艳芳,等.脆性岩石起裂应力水平与脆性指标关系探讨[J].岩石力学与工程学报,2014,33 (2):264-275.
Wang Yu,Li Xiao,Wu Yanfang,et al.Research on relationship between crack initiation stress level and brittleness indices for brittle rocks[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(2):264-275.
25 Zhang X P,Wong L N Y.Displacement field analysis for cracking processes in bonded-particle model[J].Bulletin of Engineering Geology and the Environment,2014,73(1):13-21.
[1] 苏怀斌,张钦礼,张德明,曾长根,朱晓江. 穰家垅银矿大规模充填采矿采场结构参数优化研究[J]. 黄金科学技术, 2020, 28(4): 550-557.
[2] 寇永渊, 李光, 邹龙, 马凤山, 郭捷. 金川二矿区+1 000 m中段水平矿柱回采方法研究[J]. 黄金科学技术, 2020, 28(3): 353-362.
[3] 王程程, 罗鑫尧, 陈科旭, 戴兵, 贺桂成. 含预制裂隙类岩石裂隙演化与破裂特征的试验研究[J]. 黄金科学技术, 2020, 28(3): 421-429.
[4] 聂兴信, 甘泉, 高建, 冯珊珊. 协同理念下岩金矿脉群连续回采顶板安全跨度研究[J]. 黄金科学技术, 2020, 28(3): 337-344.
[5] 于世波, 杨小聪, 原野, 王志修. 深部区域采矿时序的地压调控卸荷效应研究[J]. 黄金科学技术, 2020, 28(3): 345-352.
[6] 黄锐,吴娥,吴林. 海拔高度对矿井巷道火灾烟气蔓延规律的影响研究[J]. 黄金科学技术, 2020, 28(2): 293-300.
[7] 田龙,周智勇,陈建宏. 配备辅助通风的高温矿井采掘区温度分布数值模拟[J]. 黄金科学技术, 2020, 28(1): 61-69.
[8] 张钦礼,蒋超余,高翔,刘斌. 大断面六角形进路采矿法结构参数优化研究[J]. 黄金科学技术, 2020, 28(1): 42-50.
[9] 高远,陈庆发,蒋腾龙. 大新锰矿复杂空区群三维数值模型构建方法及胶结充填治理研究[J]. 黄金科学技术, 2019, 27(6): 851-861.
[10] 谢也真,曹平,陈昊然. 滥泥坪铜矿三维地应力测量及巷道布置优化研究[J]. 黄金科学技术, 2019, 27(6): 862-870.
[11] 宋恩祥, 李强, 张静, 彭康. 蚀变带内矿体开采中人工假底的应用研究[J]. 黄金科学技术, 2019, 27(5): 722-730.
[12] 田军, 刘建坡, 杨勇, 张长银. 进路充填法爆破扰动诱发充填体破坏规律研究[J]. 黄金科学技术, 2019, 27(5): 687-695.
[13] 孙冰,罗瑜,谢杰辉,曾晟. N型组合节理类岩体单轴压缩破坏试验[J]. 黄金科学技术, 2019, 27(4): 548-556.
[14] 杨仕教,王志会. 上覆公路浅埋采空区群稳定性数值模拟[J]. 黄金科学技术, 2019, 27(4): 505-512.
[15] 刘锋,王昭坤,马凤山,王波,王剑波,董春蕾. 矿山深部卸压技术研究现状及展望[J]. 黄金科学技术, 2019, 27(3): 425-432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李淑芳, 于永安, 朝银银, 王美娟, 张岱, 刘君, 孙亮亮. 在辽东成矿带找寻层控型金矿床靶区[J]. J4, 2010, 18(3): 59 -62 .
[2] 刘胜光, 高海峰, 黄锁英. 电子手薄在山东焦家金矿地质专业中的应用[J]. J4, 2010, 18(3): 79 -82 .
[3] 傅星. 青海绿梁山地区金矿床地质特征及成矿条件浅析[J]. J4, 2010, 18(4): 54 -57 .
[4] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[5] 黄俊,吴家富,鲁如魁 ,夏立元. 内蒙古兵图金矿成因探讨及找矿方向[J]. J4, 2010, 18(4): 1 -5 .
[6] 衣存昌, 臧恩光. 黑龙江老柞山金矿成矿规律及深部找矿探讨[J]. J4, 2010, 18(4): 58 -61 .
[7] 路明福, 扈守全. 厚大破碎矿体回采技术的对比研究[J]. J4, 2010, 18(4): 62 -64 .
[8] 黄建军, 李天恩, 范红科. 大兴安岭地区金(银)多金属矿成矿地质背景及找矿潜力的探讨[J]. J4, 2010, 18(6): 13 -17 .
[9] 李涛, 王书春, 孙树提, 汪仁健, 李亚新, 王宝明. 赤峰柴胡栏子金矿区矿体成矿规律及其找矿应用[J]. J4, 2010, 18(6): 22 -25 .
[10] 刘金鹏, 刘万强, 李定坤, 李天栋. 金亭岭金矿竖井提升系统的合理化改造[J]. J4, 2010, 18(4): 80 -81 .