img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (3): 401-410.doi: 10.11872/j.issn.1005-2518.2020.03.157

• 采选技术与矿山管理 • 上一篇    下一篇

套孔应力解除法与声发射法在新城矿区深部地应力测量中的对比研究

马春德1,2(),刘泽霖1(),谢伟斌1,魏新傲1,赵新浩1,龙珊1   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.中南大学高等研究中心,湖南 长沙 410083
  • 收稿日期:2019-09-17 修回日期:2020-03-06 出版日期:2020-06-30 发布日期:2020-07-01
  • 通讯作者: 刘泽霖 E-mail:cd.ma@163.com;zelinl95@126.com
  • 作者简介:马春德(1976-),男,辽宁丹东人,副教授,从事岩石力学与采矿工程方面的研究工作。cd.ma@163.com
  • 基金资助:
    中央高校基本科研业务费专项资金项目“岩石三轴拉伸力学特征测试装置及方法研究”(2018zzts734)

Comparative Study of Stress Relief Method and Acoustic Emission Method in In-situ Stress Measurement in Deep Area of Xincheng Gold Mine

Chunde MA1,2(),Zelin LIU1(),Weibin XIE1,Xin’ao WEI1,Xinhao ZHAO1,Shan LONG1   

  1. 1.School of Source and Safety Engineering,Central South University,Changsha 410083,Hunan,China
    2.Advanced Research Center,Central South University,Changsha 410083,Hunan,China
  • Received:2019-09-17 Revised:2020-03-06 Online:2020-06-30 Published:2020-07-01
  • Contact: Zelin LIU E-mail:cd.ma@163.com;zelinl95@126.com

摘要:

为得到新城金矿深部区域的准确地应力分布,分别采用应力解除法和声发射法对该矿区深部进行了地应力测试,得到了不同测量方式下深部地应力的分布规律。采用定向扰动最小二乘法多元回归来提高套孔应力解除法的6个应力分量的求解精度,并采用空间坐标变换公式和LUT-str三维地应力计算程序对地应力大小和方向进行了计算。使用应力解除法测量了-830~-1 030 m之间4个水平6个测点的地应力,使用声发射法测量了-950~-1 150 m之间3个水平3个测点的地应力,计算得到相应的地应力及其分布规律。2种方法测量结果对比表明:深部地应力以水平应力为主,最大水平主应力为NWW-SEE向,二者测得的最大水平主应力、垂直主应力和最小水平主应力具有较好的一致性。

关键词: 应力解除法, 声发射法, 深部矿区, 地应力, 最小二乘法, LUT-str

Abstract:

As the mining depth increases,the ground stress gradually increases,and rock burst phenomenon is likely to occur,which brings great damage to underground roadways and stope.Accurate ground stress magnitude and direction has good reference guidance value to underground engineering and can effectively avoid the occurrence of damage such as rock burst.In order to obtain the accurate ground stress distribution in the deep mining area of Xincheng gold mine,the stress relief method and acoustic emission method were used to measure the in-situ stress of the -830~-1 150 m deep mining area.The specific method of geostress measurement and the solution process of geostress measurement results were expounded.Subsequently,six measurement points of -830 m,-930 m and -1 030 m were measured using the stress relaxation method,and three measuring points in the three levels of -950 m,-1 050 m and -1 150 m were measured by AE method.Among them,the directional disturbance least squares multiple regression was used to improve the accuracy of the six stress components of the hole stress relief method,and the coordinates of the strain gauge were transformed into a space rectangular coordinate system by using the space coordinate transformation formula.The magnitude and direction of the ground stress were calculated by using the LUT-str three-dimensional geostress calculation program.The distribution law of the deep ground stress in the mining area under two different measurement modes was obtained,and the comparative analysis of the measurement results of the two methods were carried out.The results of the two measurement methods show that the horizontal principal stress and the vertical principal stress measured by the two measurement methods both increase linearly,the vertical principal stress is both close to the self-heavy stress of the overburden layer,and the deep stress of the Xincheng gold deposit is horizontal stress mainly,the maximum horizontal principal stress is NWW-SEE direction.The maximum horizontal principal stress measured by AE method is about 1.39 times of self-weight stress,and the stress relieving method is about 1.49 times.The maximum horizontal principal stress.vertical principal stress and horizontal minimum principal stress measured at -1 030 m level with errors of 12.1%,5.35%,and 13.46%,respectively,which have good consistency and provide good support for the exploitation and support design of deep mining areas.

Key words: stress relief method, acoustic emission method, deep mining area, in-situ stress, least square method, LUT-str

中图分类号: 

  • TD263

图1

应力解除法步骤图1-打大孔;2-孔底磨平;3-打定位孔;4-打小孔及洗孔;5-安装;6-取出安装工具;7-应力解除;8-读取应变"

图2

应变计探头(a)及最终应变测量示意图(b)"

图3

地应力计算过程(a)数据输入;(b)第一次迭代运算;(c)第二次迭代运算;(d)第三次迭代运算"

图4

声发射试验图"

表1

求解地应力的最终应变值"

测点编号最终应变值标定值
ε1ε2ε3ε4ε5ε6ε7ε8ε9ε10ε11ε12E/MPaμ
-830 m-1#4963211152501 027-4014298199985933754659 7810.17
-830 m-2#616229103215987-1823879429015995854258 7120.19
-895 m-3#8404101 1571 36967864546515962043339561156 2320.25
-940 m-4#859470354-65872574155119778649447774360 3400.18
-1030 m-5#-1 105947-3395571124929722199761 45647957 1910.16
-1030 m-6#8014914801 051759694-111545807191542-26760 9550.20

表2

应力解除法各测点三维主应力计算结果"

测点编号最大主应力σ1中间主应力σ2最小主应力σ3
大小/MPa方位/(°)倾角/(°)大小/MPa方位/(°)倾角/(°)大小/MPa方位/(°)倾角/(°)
-830 m-1#33.18282.214.5621.6631.1176.1614.08191.1513.03
-830 m-2#32.64271.158.9321.7238.2275.3914.23179.3211.47
-895 m-3#36.14260.3415.5524.75131.3166.1519.43355.4117.61
-940 m-4#37.23269.4712.0328.09158.2059.5720.745.8427.49
-1030 m-5#42.90278.4013.7530.3135.2261.5413.99182.0324.40
-1030 m-6#42.52284.5813.0128.42110.5676.9324.3114.891.32

表3

应力解除法各测点水平主应力和垂直主应力"

测点编号埋深/mσh max/MPaσh min/MPaσz/MPa
-830 m-1#86033.11014.46821.345
-830 m-2#86032.37414.52821.688
-895 m-3#92535.29219.94425.079
-940 m-4#97036.78822.34926.919
-1030 m-5#1 06042.11216.85628.234
-1030 m-6#1 06041.80324.31129.128

图5

应力解除法各测点的迭代变化"

图6

应力解除法应力回归曲线"

表4

声发射试验结果"

埋深/m垂直主应力/MPa水平向Kaiser点应力值/MPa自重应力σ/MPa最小水平主应力σh min/MPa最大水平主应力σh max/MPa最大水平主应力方向θ
45°90°
95024.8914.4717.4731.7825.6512.7833.46N106.58°E
1 05029.2218.5623.8340.4528.3517.1841.83N103.42°E
1 15032.0818.2424.1541.7631.0516.8643.13N103.13°W

图7

声发射法地应力回归曲线图"

表5

2种方法测量结果对比"

方法名称埋深/mσ1/MPa误差δ1/%σ1方位角/(°)误差δ2/%σ2/MPa误差δ2/%σ3/MPa误差δ3/%
应力解除法94036.799.0590.5317.7326.927.5422.3542.82
声发射法95033.46106.5824.8912.78
应力解除法1 03041.960.3078.5131.3728.681.8820.5916.54
声发射法1 05041.83103.4229.2217.18
1 乔兰,张亦海,李远,等.深部花岗岩CSIRO地应力测量中高压双轴加卸载试验及非线弹性分析模型[J].岩石力学与工程学报,2019,38(1):40-48.
Qiao Lan,Zhang Yihai,Li Yuan,et al.A non-linear elastic model and high-level biaxial loading and unloading test for CSIRO in-situ stress measurement in deep granite[J].Chinese Jounal of Rock Mechanics and Engineering,2019,38(1):40-48.
2 聂胜陆,曹洪征.那林金矿地应力与井巷稳固性的关系探讨[J].黄金科学技术,2010,18(6):65-69.
Nie Shenglu,Cao Hongzheng.Discussion on the relationship between the geo-stress and gateway stability of Nalin gold mine[J].Gold Science and Technology,2010,18(6):65-69.
3 铁柱,朝宝楞,纪主.图古日格金矿地应力测量与分析[J].黄金科学技术,2014,22(6):73-76.
Tie Zhu,Chao Baoleng,Ji Zhu.In-situ stress measurement and analysis of Tugurige gold deposit[J].Gold Science and Technology,2014,22(6):73-76.
4 Zhou Y,Zhao Z,Liu C X,et al.Inversion analysis of crustal stress distribution law in gully geomorphic mining area[J].Geotechnical and Geological Engineering,2019,37(5):4075-4087.
5 张东明,白鑫,齐消寒,等.含层理岩石的AE特征分析及基于Kaiser效应的地应力测试研究[J].岩石力学与工程学报,2016,35(1):87-97.
Zhang Dongming,Bai Xin,Qi Xiaohan,et al.Acoustic emission characteristics and in-situ stresses of bedding rock based on Kaiser effect[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(1):87-97.
6 王成虎.地应力主要测试和估算方法回顾与展望[J].地质论评,2014,60(5):971-996.
Wang Chenghu.Brief review and outlook of main estimate and measurement methods for in-situ stresses in rock mass[J].Geological Review,2014,60(5):971-996.
7 蔡美峰.地应力测量原理和方法的评述[J].岩石力学与工程学报,1993,12(3):275-283.
Cai Meifeng.Review of principles and methods for rock stress measurement[J].Chinese Journal of Rock Mechanics and Engineering,1993,12(3):275-283.
8 尤明庆.水压致裂法测量地应力方法的研究[J].岩土工程学报,2005,27(3):350-353.
You Mingqing.Study on the geo-stresses measurement with hydro-fracture of borehole[J].Chinese Journal of Geotechnical Engineering,2005,27(3):350-353.
9 乔兰,欧阳振华,来兴平,等.三山岛金矿采空区地应力测量及其结果分析[J].北京科技大学学报,2004,26(6):569-571.
Qiao Lan,Ouyang Zhenhua,Lai Xingping,et al.In-situ stress measuring and its result analysis in Sanshandao gold mine of China[J].Journal of University of Science and Technology Beijing,2004,26(6):569-571.
10 姜永东,鲜学福,许江.岩石声发射Kaiser效应应用于地应力测试的研究[J].岩土力学,2005,26(6):946-950.
Jiang Yongdong,Xian Xuefu,Xu Jiang.Research on application of Kaiser effect of acoustic emission to measuring initial stress in rock mass[J].Rock and Soil Mechanics,2005,26(6):946-950.
11 刘允芳.水压致裂法三维地应力测量[J].岩石力学与工程学报,1991,10(3):246-256.
Liu Yunfang.In-situ 3-dimensional stress measurements by hydraulic fracturing technique[J].Chinese Journal of Rock Mechanics Engineering,1991,10(3):246-256.
12 王建军.应用水压致裂法测量三维地应力的几个问题[J].岩石力学与工程学报,2000,19(2):229-233.
Wang Jianjun.Several problems in application of hydraulic fracturing method to in-situ 3D stress measurement[J].Chinese Journal of Rock Mechanics and Engineering,2000,19(2):229-233.
13 蔡美峰,乔兰,于波,等.金川二矿区深部地应力测量及其分布规律研究[J].岩石力学与工程学报,1999,18(4):46-50.
Cai Meifeng,Qiao Lan,Yu Bo,et al.Results and analysis of in-situ stress measurement at deep position of No.2 mining area of Jinchuan nickel mine[J].Chinese Journal of Rock Mechanics and Engineering, 1999,18(4):46-50.
14 蔡美峰,刘卫东,李远.玲珑金矿深部地应力测量及矿区地应力场分布规律[J].岩石力学与工程学报,2010,29(2):227-233.
Cai Meifeng,Liu Weidong,Li Yuan.In-situ stress measurement at deep position of Linglong gold mine and distribution law of in-situ stress field in mine area[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(2):227-233.
15 李利峰,邹正盛,张庆.声发射Kaiser效应在地应力测量中的应用现状[J].煤田地质与勘探,2011,39(1):41-45,51.
Li Lifeng,Zou Zhengsheng,Zhang Qing.Current situation of the study on Kaiser effect of rock acoustic emission in in-situ stress measurement[J].Coal Geology and Exploration,2011,39(1):41-45,51.
16 付小敏,王旭东.利用岩石声发射测试地应力数据处理方法的研究[J].实验室研究与探索,2007,26(11):282-285.
Fu Xiaomin,Wang Xudong.The research on data processing about in-situ stress measurement with AE[J].Research and Exploration in Laboratory,2007,26(11):282-285.
17 陈枫,饶秋华,徐纪成,等.应变解除法原理及其在大红山铁矿地应力测量中的应用[J].中南大学学报(自然科学版),2007,38(3):545-550.
Chen Feng,Rao Qiuhua,Xu Jicheng,et al.Principle of strain release method and its application to the in-situ stress measurement in Dahongshan iron mine[J].Journal of Central South University(Science and Technology),2007,38(3):545-550.
18 杨曙光.超定方程组残量极小化的定向扰动最小二乘法[J].武汉大学学报(自然科学版),1990(3):17-25.
Yang Shuguang.Directional perturbation least-squares method of minimizing the residual of an overdetermined system of linear equations[J].Journal of Wuhan University(Natural Science Edition),1990(3):17-25.
19 闫振雄,郭奇峰,王培涛.空心包体应变计地应力分量计算方法及应用[J].岩土力学,2018,39(2):715-721.
Yan Zhenxiong,Guo Qifeng,Wang Peitao.Calculation and application of in-situ stress components in hollow inclusion measurement[J].Rock and Soil Mechanics,2018,39(2):715-721.
20 闫振雄,王培涛.空心包体应变计地应力计算方法的探讨[J].岩石力学与工程学报,2018,37(增1):3568-3574.
Yan Zhenxiong,Wang Peitao.Insight into in-situ stress calculation applied in hollow inclusion measurement[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(Supp.1):3568-3574.
21 陈颙.声发射技术在岩石力学研究中的应用[J].地球物理学报,1977,20(4):312-322.
Chen Yong.Application of acoustic emission techniques to rock mechanics research[J].Chinese Journal of Geophysics Sinica,1977,20(4):312-322.
[1] 费鸿禄,刘雨,钱起飞,苏强,孙晓宇. 地应力作用下偏心装药的炮孔裂隙分布[J]. 黄金科学技术, 2020, 28(2): 228-237.
[2] 李光,马凤山,郭捷,赵海军,寇永渊,兰剑,赵金田. 高地应力破碎围岩巷道变形破坏特征及支护方式研究[J]. 黄金科学技术, 2020, 28(2): 238-245.
[3] 谢也真,曹平,陈昊然. 滥泥坪铜矿三维地应力测量及巷道布置优化研究[J]. 黄金科学技术, 2019, 27(6): 862-870.
[4] 王卫华,孙腾飞,刘希涛. 基于地应力和二次损伤的预留光爆层爆破参数研究[J]. 黄金科学技术, 2019, 27(4): 565-572.
[5] 李萧翰,刘科伟,杨家彩,李旭东. 不同地应力下爆破振动效应分析[J]. 黄金科学技术, 2019, 27(2): 241-248.
[6] 铁柱,朝宝楞,纪主. 图古日格金矿地应力测量与分析[J]. 黄金科学技术, 2014, 22(6): 73-76.
[7] 聂胜陆,曹洪征. 那林金矿地应力与井巷稳固性的关系探讨[J]. J4, 2010, 18(6): 65-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈芳芳,张亦飞,薛光. 黄金冶炼污染治理与废物资源化利用[J]. J4, 2011, 19(2): 67 -73 .
[2] 王吉青,王苹,赵晓娟,林乡伟. 黄金生产尾矿综合利用的研究与应用[J]. J4, 2010, 18(5): 87 -89 .
[3] 陈建宏,覃曹原,邓东升 . 基于AHP和物元TOPSIS法的层状岩体巷道冒顶风险评价[J]. 黄金科学技术, 2017, 25(1): 55 -60 .
[4] 彭剑平,沈述保. 绿色矿山建设长效机制与典型案例[J]. 黄金科学技术, 2016, 24(4): 133 -136 .
[5] 宋英昕,宋明春,丁正江,魏绪峰,徐韶辉,李杰,谭现峰,李世勇,张照录, 焦秀美,胡弘,曹佳. 胶东金矿集区深部找矿重要进展及成矿特征[J]. 黄金科学技术, 2017, 25(3): 4 -18 .
[6] 谢敏雄,李政要,林属勇,迟晓鹏,亓传铎. 提高选矿厂磨矿系统效能的技术改造及应用研究[J]. 黄金科学技术, 2012, 20(6): 65 -68 .
[7] 王文军,肖庆飞,康怀斌,詹信顺,吴启明,肖珲. 某金矿MQG3660格子型球磨机球荷特性优化试验研究[J]. 黄金科学技术, 2016, 24(2): 90 -94 .
[8] 胡笑坤,宋慧昌,刘青. 金矿选矿厂磨矿分级过程仿真系统研发[J]. 黄金科学技术, 2016, 24(5): 94 -101 .
[9] 谢覃江. 云南省人头箐金矿床地质特征及成因探讨[J]. 黄金科学技术, 0, (): 0 .
[10] 马凤山,郭捷,李克蓬,卢蓉,张洪训,李威. 三山岛海底金矿开采充填体与顶板岩层的变形监测研究[J]. 黄金科学技术, 2016, 24(4): 66 -72 .