img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (5): 659-677.doi: 10.11872/j.issn.1005-2518.2019.05.659

• 矿产勘查与资源评价 • 上一篇    下一篇

滇西北烂泥塘斑岩铜金矿床铁氧化物LA-ICP-MS微量元素特征及其地质意义

郭剑衡1,2(),冷成彪1,3(),张兴春1,张伟1,尹崇军4,张陆佳4,田振东1,2   

  1. 1. 中国科学院地球化学研究所矿床地球化学国家重点实验室,贵州 贵阳 550081
    2. 中国科学院大学,北京 100039
    3. 东华理工大学核资源与环境国家重点实验室,江西 南昌 330013
    4. 云南华西矿产资源有限公司,云南 昆明 650200
  • 收稿日期:2019-06-28 修回日期:2019-08-03 出版日期:2019-10-31 发布日期:2019-11-07
  • 通讯作者: 冷成彪 E-mail:124322611@qq.com;lcb8207@163.com
  • 作者简介:郭剑衡(1992-),女,甘肃张掖人,博士研究生,从事矿物学、岩石学和矿床学专业研究工作。124322611@qq.com
  • 基金资助:
    国家重点研发计划项目“青藏高原大陆碰撞斑岩铜—钼—金矿系统结构与形成机制”(2016YFC0600305);国家自然科学基金项目“滇西北中甸岛弧印支期斑岩铜矿床的保存与剥蚀程度研究:低温年代学制约”(41373051)

Trace Elemental Compositions of Iron Oxides from the Lannitang Porphyry Cu-Au Deposit in the Zhongdian Region (Northwest) and the Geological Significances:A LA-ICP-MS Study

Jianheng GUO1,2(),Chengbiao LENG1,3(),Xingchun ZHANG1,Wei ZHANG1,Chongjun YIN4,Lujia ZHANG4,Zhendong TIAN1,2   

  1. 1. State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550081,Guizhou,China
    2. Chinese Academy of Science University,Beijing 100039,China
    3. State Key Laboratory of Nuclear Resources and Environment,East China University of Technology,Nanchang 330013,Jiangxi, China
    4. Yunnan Huaxi Mineral Resources Co. ,Ltd. ,Kunming 650200,Yunnan,China
  • Received:2019-06-28 Revised:2019-08-03 Online:2019-10-31 Published:2019-11-07
  • Contact: Chengbiao LENG E-mail:124322611@qq.com;lcb8207@163.com

摘要:

烂泥塘斑岩铜金矿床位于云南省西北部的中甸地区,矿体主要以细脉—浸染状、网脉状产于石英二长斑岩和石英闪长玢岩之中。矿区热液蚀变作用发育,围绕矿体由深部至浅部依次发育钾化带、绿泥石—绢云母化带、绢云母化带和泥化带。钾化带中发育3种不同产状的磁铁矿,根据磁铁矿产出状态与脉体之间的相互穿插关系,将其划分为浸染状分布的磁铁矿(Ⅰ类)、单一脉状磁铁矿(Ⅱ类)和石英—硫化物脉中的磁铁矿(Ⅲ类)。此外,矿区常见产于成矿期后白云石—石英大脉中的镜铁矿。采用激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)对上述铁氧化物进行了原位微区成分测试。结果表明:3类磁铁矿均富集Ti、V、Cr、Ni、Co、Al、Mg、Mn、Ga和Zn等微量元素。早期Ⅰ类磁铁矿含有钛铁矿出溶体,与Ⅱ、Ⅲ类磁铁矿相比,相对富集Mg、Ni和V等元素,属于岩浆磁铁矿;Ⅱ类磁铁矿相对富集Mn、Zn、Sn和Sc等元素,属于热液磁铁矿。岩浆磁铁矿(Ⅰ类磁铁矿)与后期脉状磁铁矿(Ⅱ类和Ⅲ类)相比,Ti、Al和Cr等元素含量相差不大。这可能是由于后期热液蚀变对Ⅰ类磁铁矿的强烈改造,导致其中Ti、Al和Cr等元素含量降低(通常岩浆磁铁矿比热液磁铁矿更富集Ti、Al和Cr)。Ⅱ、Ⅲ类脉状磁铁矿属于热液磁铁矿且二者微量元素含量差别不大,说明它们属于同一期流体中沉淀的产物。与磁铁矿相比,镜铁矿中的Ti、Al和V元素含量相差不大,而Cr、Ga、Ni和Co等元素含量比磁铁矿低一个数量级。结合前人资料,认为Al、Mn、Mg和Sc元素在磁铁矿中主要以类质同象形式存在,而Ca、S、Cu、Ba、Sr和Zr等元素主要以显微包裹体形式存在。钾化带中广泛发育的磁铁矿—赤铁矿共生组合、镜铁矿以及磁铁矿中异常低的Mn含量表明,烂泥塘矿区成矿流体的氧逸度高达赤铁矿—磁铁矿缓冲线。

关键词: 斑岩铜金矿床, 磁铁矿, LA-ICP-MS, 氧逸度, 热液蚀变, 烂泥塘, 滇西北地区

Abstract:

The Zhongdian area, located in northwestern Yunnan, is an important porphyry belt in China. It hosts a large number of Triassic intermediate-felsic porphyritic intrusions and porphyry deposits such as Pulang porphyry Cu-Au, Xuejiping porphyry Cu, Chundu porphyry Cu, Langdu Cu skarn and Lannitang porphyry Cu-Au deposit. The Lannitang porphyry Cu-Au deposit is located in west belt of the Zhongdian area. The magnetite in Lannitang porphyry Cu-Au deposit is widespread and it occurred as disseminated and vein types in potassic and chlorite-sericite alteration zone.Specularite is also observed frequently in the post-mineralization dolomite-quartz coarse veins.We conducted the petrography and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to determine the texture and composition of iron oxides (magnetite and specularite). In this study, we identified three types of magnetite. Type-Ⅰ magnetite is disseminated in potassic alteration of deposit. It is generally contains ilmenite lamellas. Type-Ⅱ and Type-Ⅲ magnetite are occurred in magnetite single vein and magnetite-bearing quartz stockwork vein separately. Type-Ⅱ and Type-Ⅲ are distributed in potassic and chlorite-sericite alteration zone. The LA-ICP-MS analyses show that Type-Ⅰ magnetite is relatively rich in V, Ni and Mg than other two types of magnetite. Type-Ⅱ and Type-Ⅲ magnetite are more enriched in Mn, Zn, Sn, Sc and high-Ni/Cr ratio than Type-Ⅰ magnetite.Type-Ⅱ and Type-Ⅲ magnetite has similar content of many trace elements. The concentration of Cr,Ga,Ni and Co in specularite is obviously lower than those of magnetite. The ilmenite lamellae and low-Ni/Cr(Ni/Cr<1) ratio revealed that Type-Ⅰ magnetite belongs to igneous magnetite. Type-Ⅱ and Type-Ⅲ are distributed in veinlets and displayed high-Ni/Cr ratio (Ni/Cr>1). We suggested that they are hydrothermal magnetite. Type-Ⅰ magnetite (igneous) is intergrown with hydrothermal minerals including chlorite and sericite and it has quiet similar contents of Ti, Al and Cr with the other two hydrothermal magnetite.We suggest that Type-Ⅰ magnetite (igneous) experienced late-stage fluid alteration, which induced the loss of Ti, Al and Cr.The similar content of trace element between Type-Ⅱ and Type-Ⅲ magnetite indicated that they may precipitate from same period of fluid.In combination with previous studies, we propose that the presence of elements such as Al, Mn, Mg and Sc are in solid solution within magnetite (and/or specularite),but the Ca, S, Cu, Ba, Sr and Zr may be present in micro-/nano-scale mineral inclusions.The widespread presence of magnetite-hematite and specularite in the potassic alteration zone and low Mn concentration of magnetite indicates a high oxygen fugacity of the Lannitang porphyry Cu-Au deposit (magnetite-hematite buffer).

Key words: porphyry Cu-Au deposit, magnetite, LA-ICP-MS, fugacity, hydrothermal alteration, Lannitang, Northwest Yunnan

中图分类号: 

  • P618.51

图1

中甸弧区域地质简图(底图据文献[30,31]修改) 1.第四系;2.喇嘛亚组;3.图姆沟组;4.曲嘎土寺组;5.燕山期花岗岩;6.印支期斑岩体;7.断裂;8.斑岩型矿床;9.矽卡岩型矿床"

图2

烂泥塘斑岩铜金矿区地质简图(底图据文献[34]修改) 1.蚀变安山岩;2.闪长玢岩;3.石英闪长玢岩;4.石英二长斑岩;5.地质界线;6.工业矿体;7.低品位矿体;8.实测断层;9.取样钻孔"

图3

烂泥塘斑岩铜金矿床1号勘探线剖面图(位置见图2;底图据文献[34]修改) 1.第四系;2.闪长岩;3.石英闪长玢岩;4.石英二长斑岩;5.矿体;6.低品位矿体;7.地质界线"

图4

烂泥塘斑岩铜金矿床不同矿化阶段代表性样品照片 (a)硫化物脉切穿单一磁铁矿脉,磁铁矿—石英脉切穿磁铁矿和硫化物脉;(b)磁铁矿—石英硫化物脉切穿磁铁矿脉;(c)后期白云石石英脉切穿磁铁矿脉;(d)白云石—石英—黄铜矿粗脉;(e)黄铜矿—石膏角砾被后期白云石—石英脉所包裹;(f)镜铁矿存在于晚期白云石—石英—石膏脉之中"

图5

烂泥塘斑岩铜金矿床典型矿石样品的镜下显微照片 (a)反射光下的Ⅰ类磁铁矿,黑云母蚀变形成的绿泥石与Ⅰ类磁铁矿密切共生;(b)含有钛铁矿出溶体的Ⅰ类磁铁矿;(c)反射光下的Ⅱ类磁铁矿单一脉;(d)正交偏光镜下Ⅲ类磁铁矿+石英脉;(e)反射光下的磁铁矿+石英脉;(f)石英磁铁矿脉,磁铁矿裂隙中填充后期黄铜矿;(g)赤铁矿—磁铁矿共生现象;(h)后期石英—白云石脉中的叶片状镜铁矿"

表1

样品编号、采样位置及其矿石标本描述"

样品编号 钻孔编号 采样位置/m 磁铁矿分类 样品描述
ZK1-2-6 ZK1-2 180 Ⅰ类+Ⅲ类 绿泥石—绢云母化,石英+磁铁矿脉体
ZK1-2-7 ZK1-2 251 Ⅰ类+Ⅲ类 绿泥石—绢云母化,石英+磁铁矿脉体
ZK1-2-9 ZK1-2 279.5 Ⅲ类 绿泥石—绢云母化,石英+磁铁矿脉
ZK1-2-11 ZK1-2 326 Ⅱ类 钾化叠加绿泥石—绢云母化,单一磁铁矿脉
ZK1-2-16 ZK1-2 360 Ⅲ类 钾化蚀变,石英+磁铁矿脉
ZK1-2-30 ZK1-2 720 Ⅰ类 钾化蚀变,单一磁铁矿脉与石英+磁铁矿脉体
ZK3-7-2 ZK3-7 196.7 Ⅲ类 钾化蚀变叠加绿泥石—绢云母化蚀变石英+磁铁矿脉
ZK3-7-4 ZK3-7 198 Ⅲ类 钾化蚀变叠加绿泥石—绢云母化石英+磁铁矿脉
ZK3-7-5 ZK3-7 198.7 Ⅱ类 钾化蚀变叠加绿泥石—绢云母化蚀变单一磁铁矿脉与石英+磁铁矿脉
ZK3-7-9 ZK3-7 228 Ⅱ类+Ⅲ类 钾化蚀变,石英+磁铁矿脉
ZK3-7-10 ZK3-7 312 镜铁矿 绿泥石—绢云母化蚀变,石英+白云石+黄铁矿+镜铁矿
ZK3-7-11 ZK3-7 314 Ⅲ类 钾化蚀变,石英+磁铁矿呈网脉状
ZK4-7-9 ZK4-7 895 Ⅰ类+Ⅲ类 绿泥石—绢云母化蚀变,石英+磁铁矿脉
LNT14-2 平硐矿石堆 Ⅰ类+Ⅲ类 钾化蚀变叠加绢云母化蚀变,石英+磁铁矿脉

图6

烂泥塘斑岩铜金矿床铁氧化物微量元素蛛网图(缺失的点表示低于检出限) (a)Ⅰ类磁铁矿;(b)Ⅱ类磁铁矿;(c)Ⅲ类磁铁矿;(d)镜铁矿"

图7

烂泥塘斑岩铜金矿床铁氧化物中主要微量元素箱线图 注:箱体的上线和下线表示数据95%的置信区间的上限和下限;黑色的横线代表中值;黑色实心圆代表平均值"

表2

烂泥塘铜金矿铁氧化物LA-ICP-MS微量元素测试结果"

样品 Ⅰ类:浸染状磁铁矿(17个)
w(FeO)/% Mg Al Sc Si Ca Ti V Cr Mn Co Ni Zn Cu Ga Sn Pb
1-2-7-01 97.3 980 2 044 4.91 4 321 445 5 675 623 3.3 27.1 23.2 24.0 75.7 0.2 4.15 8.6 1.1
LNT14-2-01 98.6 18 59 0.58 1 599 58.3 5 364 663 131.0 1.2 20.3 21.1 47.2 0.3 3.21 7.1 5.6
LNT14-2-02 98.5 291 226 0.50 1 457 <LOD 5 475 566 3.8 20.8 20.2 28.8 37.8 2.9 3.28 6.2 5.8
LNT14-2-03 98.8 34 171 0.58 1 538 9.9 4 302 634 8.0 1.3 23.1 21.0 41.0 0.2 3.65 5.8 3.3
LNT14-2-04 98.2 61 242 0.46 1 403 1 178 7 039 782 207.0 4.4 13.6 13.7 49.9 0.6 3.66 7.4 3.4
LNT14-2-05 98.3 37 215 0.74 1 345 82.9 6 903 680 158.0 1.3 16.0 19.6 36.0 0.8 3.33 7.9 5.1
LNT14-2-06 97.3 134 3 287 0.55 1 455 838 7 335 780 148 6.6 22.3 13.3 68.9 0.1 13.4 7.7 2.4
1-2-6-16 97.4 271 1 924 1.42 3 840 478 6 645 629 192 2.3 14.3 21.4 28.9 1.2 5.0 8.3 11.8
1-2-7-03 98.4 115 441 1.06 2 010 1 322 5 246 972 206 2.6 12.5 21.3 74.7 <LOD 4.07 6.8 4.6
1-2-7-05 98.2 377 1 775 1.56 1 155 45.2 2 381 1 335 197 7.8 28.7 45.7 11.2 12.0 1.67 4.2 7.3
1-2-30-1-10 97.8 632 1 516 1.46 9 132 1 737 3 922 2 233 209 3.8 10.0 57.4 21.1 3.4 3.29 5.4 3.1
1-2-30-1-12 96.8 3 532 4 103 0.84 5 593 34.3 1 244 1 347 320 10.5 7.4 72.9 31.2 2.8 5.82 1.4 8.5
1-2-30-1-14 95.4 1 102 5 168 2.72 5 671 1 159 8 767 1 135 126 20.6 10.0 22.9 39.2 36.0 4.18 7.7 48.9
4-7-9-1-01 96.2 782 3 703 3.41 3 074 <LOD 8 897 1 646 216 26.2 10.6 28.5 36.6 40.9 5.46 10.1 47.3
4-7-9-1-02 96.4 1 115 3 774 2.59 3 762 40.6 6 656 1 499 236 30.1 11.0 24.7 47.5 31.5 5.14 6.7 36.0
4-7-9-1-03 95.6 1 508 4 378 15.4 7 207 1 282 7 410 1 679 6.5 27.5 10.0 28.7 22.1 1.6 3.96 6.2 2.7
4-7-9-1-04 95.6 8 062 700 1.25 1 965 268 3 434 1 363 68.5 6.8 7.9 10.9 66.4 0.7 4.19 2.3 21.9
平均值 97.3 1 121 1 984 2.35 3 325 561 5 688 1 092 143 11.8 15.4 28.0 43.3 7.96 4.56 6.46 12.8
标准差 1.15 1 987 1 746 3.58 2 372 595 2 118 487 95.3 10.8 6.4 16.2 19.0 13.41 2.48 2.14 15.4
样品 Ⅱ类:单一磁铁矿脉(15个)
w(FeO)/% Mg Al Sc Si Ca Ti V Cr Mn Co Ni Zn Cu Ga Sn Pb
3-7-5-08 98.4 86 383 1.23 1 793 48.4 5 395 973 6.9 3.5 27.9 28.8 68.8 3.4 3.83 6.7 10.5
3-7-5-10 95.3 1 676 4 686 16.58 1 256 41.2 7 127 561 119.0 18.3 26.9 37.5 47.4 1.1 7.29 5.2 2.1
3-7-5-11 99.0 210 490 1.55 1 324 143 1 809 895 4.7 5.8 28.6 23.2 37.9 2.6 2.86 6.5 2.7
3-7-5-12 97.1 1 447 2 499 9.08 6 241 1362 3 378 893 6.6 15.6 27.3 24.4 63.8 1.0 4.63 1.5 0.1
3-7-9-01 97.0 1 793 2 258 11.23 946 21.9 3 184 708 11.9 17.1 27.8 24.9 59.1 0.9 4.23 2.9 0.5
3-7-9-02 99.2 20 74 0.94 1 862 348 2 267 887 11.2 4.2 54.0 45.6 27.8 3.0 2.29 2.8 1.0
3-7-9-03 97.0 831 1 416 7.07 1 321 175 9 542 1 083 20.6 9.3 55.6 39.3 <LOD 0.2 3.09 2.1 0.1
3-7-9-07 98.0 120 285 2.09 2 915 800 7 943 1 598 4.3 3.4 53.3 34.5 33.9 1.1 2.18 8.6 1.2
1-2-11-01 98.2 486 764 1.20 1 428 1 085 3 649 796 62.7 5.9 14.2 11.9 17.7 1.6 2.92 7.8 2.1
1-2-11-01 97.9 670 680 1.78 2 316 1 394 5 656 886 27.5 6.9 13.6 12.3 15.8 1.3 2.41 10.2 0.2
1-2-11-04 96.8 700 4 322 2.70 2 883 153 8 943 889 12.7 7.2 16.0 9.3 25.8 1.8 9.8 5.0 17.9
1-2-11-04 98.0 378 866 1.86 1 683 623 5 278 2 243 245 9.0 15.7 18.1 33.8 1.5 3.75 10.2 0.3
1-2-11-05 98.4 682 297 1.83 16 132 700 5 315 781 8.3 7.3 13.7 16.7 13.7 0.9 2.72 10.1 10.0
1-2-11-06 98.2 465 959 0.85 3 642 172 4 373 707 24.8 2.8 14.8 15.3 10.2 0.8 2.55 3.5 18.3
1-2-11-07 97.4 1 439 2 441 3.62 4 559 1 303 3 438 871 11.2 8.0 15.0 17.3 17.4 2.1 2.84 4.5 23.0
平均值 97.7 734 1 495 4.20 3 353 558 5 153 985 38.5 8.3 27.0 23.9 33.8 0.8 3.83 3.5 18.3
标准差 0.99 590 1 457 4.70 3 820 518 2 361 417 64.5 4.9 15.4 11.1 19.4 22.6 2.1 3.5 19.6
样品 Ⅲ类:石英+磁铁矿脉
w(FeO)/% Mg Al Sc Si Ca Ti V Cr Mn Co Ni Zn Cu Ga Sn Pb
1-2-7-06 95.8 2 831 5 495 22.97 1 708 59.9 7 338 427 3.9 5.6 4.5 13.2 147.2 2.1 7.43 4.5 23.0
1-2-7-09 97 1 232 3 801 2.01 2 106 266 4 229 1 034 15.4 1.6 3.5 32 139 2.84 7.32 5.95 7.1
1-2-7-10 97.3 860 3 832 4.17 5 221 156 5 882 1 234 5 28.7 3.3 6.3 77.2 4.91 18.58 3.17 8.1
3-7-11-01 98.8 148 1 512 1.43 5 989 111 2 248 1 210 1.1 9.5 2.8 8.6 17.2 <LOD 9.97 <LOD <LOD
3-7-11-02 97.1 1 187 3 350 13.42 9 929 806 6 084 1 146 4.7 21.4 2.2 12.9 63.7 1.3 36.5 11 0.3
样品 w(FeO)/% Mg Al Sc Si Ca Ti V Cr Mn Co Ni Zn Cu Ga Sn Pb
3-7-11-04 97.7 705 4 221 12.38 3 510 230 4 049 842 3.4 44.2 4.7 12.9 144.4 <LOD 58.41 8.5 10.1
3-7-11-05 98.5 76 302 0.4 1 384 159 5 949 433 159 2.7 16.5 23 101.6 2.4 4.4 11.9 0.5
3-7-11-07 96.3 1 549 2 813 8.2 4 843 114 3 987 402 32.5 14.8 12.9 27.9 95.4 0.3 6.2 3.0 0.6
3-7-11-09 96.2 816 196 0.78 2 971 40.7 18 451 895 8.4 107.1 1.2 1.5 18.8 0.5 3.5 4.2 3.9
1-2-9-01 98.5 27 250 0.69 3 011 46.5 6 205 687 10.5 2.2 18.4 17.6 76.8 1.2 4.08 4.8 6.8
1-2-9-03 98.2 122 978 1.26 2 162 2 6 658 706 3.8 1.6 17.4 17.3 83.8 0.2 4.44 9.2 5.6
1-2-9-05 98.8 45 80 0.32 1 236 379 4 104 452 3.5 1.3 17.8 20.7 40.1 0.6 4.18 10.3 3.1
1-2-9-07 96.0 1 039 3 822 12.06 1 061 50 4 424 383 3.4 6.7 18.9 22.7 86.8 0.2 7.59 15.0 3.4
1-2-16-01 96.9 268 3 085 1.27 4 443 432 4 800 371 10.8 2.1 12.4 26.6 66.0 0.3 6.81 9.5 1.2
1-2-16-02 98.5 11 102 0.76 6 147 106 5 909 533 6.3 0.6 18.0 15.7 101.4 0.1 4.02 10.4 8.4
1-2-16-03 98.9 32 173 0.7 3 507 30.2 3 374 491 4.3 1.9 16.3 20.3 227.3 <LOD 3.27 8.8 5.3
1-2-16-05 98.4 83 523 0.63 5 043 98.5 4 727 464 5.6 1.3 14.2 20.7 91.1 0.8 3.78 8.8 26.8
LNT14-2-09 96.7 1 122 3 018 6.4 3 778 127 8 464 1 088 3.7 13.3 27.0 23.2 73.7 2.6 7.43 5.7 11.3
LNT14-2-11 96.0 2 233 3 795 17.32 2 851 39.1 6 398 1 041 16.9 24.8 26.3 26.4 82.6 0.2 8.43 2.6 1.0
LNT14-2-13 95.8 1 097 5 879 10.54 7 826 151 6 705 1 174 5.2 4.8 29.4 16.0 426.1 4.5 11.61 9.4 13.0
4-7-5-03 99.0 10 69 1.09 2 845 56 2 319 1 421 192 4.4 53.2 27.4 34.8 0.2 2.38 6.6 <LOD
4-7-5-04 96.1 1 305 2 040 5.97 3 032 25.2 9 257 1 256 3.1 10.8 54.9 34.4 75.3 1.1 2.95 8.0 4.1
4-7-5-05 94.7 5 157 7 328 1.59 7 391 710 3 560 279 9.3 10.1 12.1 75.0 41.0 1.7 6.39 6.8 1.0
4-7-5-06 96.9 1 770 3 690 2.15 1 868 37 2 066 185 7.2 5.2 10.9 66.8 17.4 1.3 4.74 16.1 4.3
4-7-5-07 97.9 1 626 2 831 3.24 2 440 197 849 141 3.6 5.9 13.8 75.4 19.0 1.0 5.13 8.4 0.1
4-7-5-08 98.4 686 2 250 1.17 5 017 557 2 767 227 91.3 5.2 12.1 37.4 13.3 1.8 3.66 8.4 <LOD
4-7-5-09 97.2 591 3 166 2.60 5 908 398 4 790 670 29.6 11.3 13.7 28.2 15.0 3.9 2.12 4.0 4.1
4-7-5-10 96.7 763 4 359 2.46 1 888 10.6 3 748 681 37.7 9.2 13.8 29.9 17.2 1.2 2.19 4.4 3.2
1-2-6-01 97.0 756 3 395 2.75 4 963 335 5 446 626 122 14.1 16.3 28.5 16.7 5.8 1.62 5.8 7.9
1-2-6-02 97.7 374 3 103 1.23 1 079 38.9 3 733 731 34 12.8 13.1 37.0 13.4 3.4 3.55 6.3 6.0
样品 w(FeO)/% Mg Al Sc Si Ca Ti V Cr Mn Co Ni Zn Cu Ga Sn Pb
1-2-6-02 97.7 374 3 103 1.23 1 079 38.9 3 733 731 34.0 12.8 13.1 37.0 13.4 3.4 3.55 6.3 6.0
1-2-6-03 98.1 423 1 742 1.74 1 037 89.7 3 546 738 42.5 9.6 14.0 31.5 13.4 1.7 1.86 4.3 16.6
1-2-6-04 97.6 808 2 659 2.08 1 499 139 4 334 690 35.5 17.4 11.9 30.9 17.5 7.6 2.07 6.6 7.1
1-2-6-05 96.1 2561 4 951 15.72 2 649 428 4 376 138 14.8 42.2 17.3 27.3 33.6 0.1 2.67 5.0 1.2
1-2-6-06 95.3 2773 5 650 13.94 2 146 705 7 544 277 4.2 59.9 16.9 25.7 46.4 1.9 3.03 3.1 4.0
1-2-6-08 95.0 3141 6 430 18.68 2 269 154 3 629 76 12.3 49.9 17.6 28.5 42.5 <LOD 3.85 5.6 2.1
1-2-6-09 96.6 2103 3 795 17.01 1 293 58.5 2 519 14 4.2 44.7 17.7 23 42.5 1.4 3.49 6.9 6.7
1-2-6-10 96.1 927 3 327 6.02 1 369 122 8 470 1637 15.6 16.1 8.1 26.5 23.4 0.6 5.36 4.3 2.0
1-2-6-11 95.8 852 3 690 3.54 2 209 82.2 11 094 1299 17.9 14.5 9 19 35.7 0.7 4.23 8.0 1.4
1-2-6-12 98.4 658 1 144 3.17 1 843 21.3 4 147 753 0.1 15.1 11.9 33.1 69.8 0.7 4.92 6.3 2.3
1-2-6-13 97.9 935 1 895 3.02 1 886 162 5 125 725 11.3 6.9 12.6 33.3 86.6 1.8 5.44 6.3 0.4
1-2-6-14 95.5 3 830 4 692 4.9 2 207 130 5 632 718 20.8 73.3 12.3 30.4 176.1 0.2 8.24 2.9 0.3
1-2-6-15 98.3 158 330 2.55 3 611 416 6 018 828 1.4 4.6 12.5 31.3 152.9 2.3 4.62 10.3 1.3
3-7-9-08 96.4 2 423 2 694 6.72 1 933 45.9 8 212 808 11.4 118 11.7 31.5 112.8 7.7 6.32 4.1 0.8
3-7-4-05 98.8 251 598 2.2 1 560 276 3 998 730 12.5 1.9 12.5 25.8 86.1 25.7 4.65 5.4 0.7
3-7-4-06 98.3 686 1 739 2.73 1 755 305 4 133 734 1.2 7.0 12.5 25.2 113.5 <LOD 4.98 3.8 0.3
3-7-2-09 98.0 370 2 162 4.35 3 741 523 6 435 709 10.8 4.9 12.9 19.4 219.3 <LOD 6.27 6.2 0.3
3-7-2-10 96.9 1 024 2 364 11.62 5 853 946 9 042 967 2.8 27.8 14.1 25.0 39.7 9.1 14.44 5.4 6.8
3-7-2-11 97.7 183 324 9.39 1 621 144 9 116 930 6.3 13.1 13.2 15.5 22.8 10.3 12.57 4.9 8.6
4-7-9-3-01 98.4 368 766 2.62 2 236 664 4 535 911 12.5 39.5 8.5 19.3 65.5 10.6 17.42 5.2 5.7
4-7-9-3-02 98.2 764 1 642 4.24 1 657 85.7 2 133 923 16.8 20.3 14.2 27.1 26.4 15.8 3.82 6.0 6.4
4-7-9-3-03 95.6 1 141 5 190 10.51 4 650 148 8 234 886 2.2 6.2 29.1 15.6 1 139 10.3 7.72 4.6 9.7
4-7-9-3-04 97.5 559 2 951 3.14 1 458 110 3 795 747 4.8 4.7 34.3 22.1 138.3 13.4 6.99 6.2 8.5
4-7-9-3-05 99.2 29 286 0.15 1 763 705 755 1184 6.9 0.4 0.1 <LOD 1.5 1.3 2.08 10.9 0.5
平均值 97.3 1047 2651 5.51 3158 231 5384 729 20.9 18.6 15.2 26.4 97 3.61 7.35 6.8 5.28
标准差 1.18 1064 1853 5.64 1966 235 2887 365 37.6 24.8 10.4 13.8 163 5.04 9.06 2.96 5.56
样品 镜铁矿(8个)
w(FeO)/% Mg Al Sc Si Ca Ti V Cr Mn Co Ni Zn Cu Ga Sn Pb
3-7-10-01 97.7 2 893 708 0.14 2 068 1 183 4 204 1 636 8.1 61.9 5.3 0 124.6 0.6 3.8 <LOD 21.3
3-7-10-02 98.6 1 123 419 0.33 1 554 458 3 199 935 1.7 25 1.6 0.7 39.1 0.6 2.44 0.1 8.9
3-7-10-03 98.7 15 842 0.27 1 849 83.4 3 128 1 204 12.5 0 0.3 2.4 10.0 0.7 2.74 <LOD 0.7
3-7-10-04 98.4 33 1 335 <LOD 1 249 32.3 4 219 1 814 8.3 2.5 0.3 <LOD 10.0 <LOD 2.96 0.1 1.5
3-7-10-05 99.0 10 1 105 0.09 1 174 63.7 1 965 759 9.9 3.4 0.3 0.2 6.3 0.3 2.6 <LOD 24.6
3-7-10-06 97.9 51 726 1.88 994 502 9 040 318 1.7 1.3 1.4 1.7 10.3 0.5 3.53 19.5 3.2
4-7-8-01 99.1 7 230 0.35 1 359 43.3 3 154 181 <LOD 0 0.5 0.3 2.8 <LOD 2.32 8.8 0.8
4-7-8-02 97.4 12 876 0.9 805 402 12 028 482 6.9 0.7 1.1 1.9 12.1 0.7 2.97 10.2 2.0
平均值 98.4 518 780 0.5 1 381 346 5 117 916 6.14 11.9 1.35 0.9 26.9 0.43 2.92 4.84 7.87
标准差 0.62 1 034 352 0.62 425 392 3 509 599 4.48 21.9 1.68 0.96 41.0 0.3 0.52 7.32 9.71

图8

4个样品的LA-ICP-MS时间信号 (a)稳定平直信号,显示不含包裹体;(b)硫化物包裹体,S、Cu信号同时增加;(c)天青石包裹体,Ba、Sr信号同时增加;(d)锆石包裹体,Zr、Y、Hf、U、Th信号同时增加"

图9

烂泥塘斑岩铜金矿床铁氧化物部分元素之间的协变图"

图10

斑岩型铜金矿成矿过程中氧逸度与硫的价态(据文献[54,57]修改) FMQ-铁橄榄石—磁铁矿—石英;NNO-镍—镍氧化物;HM-赤铁矿—磁铁矿"

图11

烂泥塘斑岩铜金矿床磁铁矿成因判别图解[9,10] "

1 陈华勇,韩金生 .磁铁矿单矿物研究现状、存在问题和研究方向[J].矿物岩石地球化学通报,2015,34(4):724-730.
Chen Huayong , Han Jinsheng .Study of magnetite:Problems and future[J].Bulletin of Mineralogy,Petrology and Geochemistry,2015,34(4):724-730.
2 Dare S A S , Barnes S J , Beaudoin G .Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid,Sudbury,Canada:Implications for provenance discrimination[J].Geochimica et Cosmochimica Acta,2012,88(7):27-50.
3 Dare S A S , Barnes S J , Beaudoin G ,et al .Trace elements in magnetite as petrogenetic indicators[J].Mineralium Deposita,2014,49(7):785-796.
4 Nadoll P , Koenig A E .LA-ICP-MS of magnetite:Methods and reference materials[J].Journal of Analytical Atomic Spectrometry,2011,26(9):1872-1877.
5 Nadoll P , Mauk J , Hayes T ,et al .Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the mesoproterozoic belt supergroup,United States[J].Economic Geology,2012,107(60):1275-1292.
6 邱检生,张晓琳,胡建,等 .鲁西碳酸岩中磷灰石的原位激光探针分析及其成岩意义[J].岩石学报,2009,25(11):2855-2865.
Qiu Jiansheng , Zhang Xiaolin , Hu jian ,et al .In-situ LA-ICPMS analysis of apatite from carbonatites in west Shandong Province:Implications for petrogenesis[J].Acta Petrologica Sinica,2009,25(11):2855-2865.
7 贾泽荣,詹秀春,何红蓼,等 .激光烧蚀—等离子体质谱结合归一定量方法原位线扫描检测石榴石多种元素[J].分析化学,2009,37(5):653-658.
Jia Zerong , Zhan Xiuchun , He Hongliao ,et al .Application of normalization for In-situ multi-element raster analysis in laser ablation-inductively coupled plasma mass spectrometry-illustrated with garnets[J].Chinese Journal of Analytical Chemistry,2009,37(5):653-658.
8 张乐骏,周涛发,范裕,等 .宁芜盆地陶村铁矿床磷灰石的LA-ICP-MS研究[J].地质学报,2011,85(5):834-848.
Zhang Lejun , Zhou Taofa , Fan Yu ,et al .A LA-ICP-MS study of apatite from the Taocun magnetite-apatite deposit,Ningwu basin[J].Acta Geologica Sinica,2011,85(5):834-848.
9 Dupuis C , Beaudoin G .Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types[J].Mineralium Deposita,2011,46(4):319-335.
10 Nadoll P , Angerer T , Mauk J L ,et al .The chemistry of hydrothermal magnetite:A review[J].Ore Geology Reviews,2014,61(5):1-32.
11 Pisiak L K , Canil D , Lacourse T ,et al .Magnetite as an indicator mineral in the exploration of porphyry deposits:A case study in till near the mount polley Cu-Au deposit,British Columbia,Canada[J].Economic Geology,2017,112(4):919-940.
12 胡浩,段壮, Luo Yan ,等 .鄂东程潮铁矿床磁铁矿的微量元素组成及其矿床成因意义[J].岩石学报,2014,30(5):1292-1306.
Hu Hao , Duan Zhuang , Luo Yan ,et al .Trace element systematics of magnetite from the Chengchao iron deposit in the Daye district:A laser ablation LCP-MS study and insights into ore genesis[J].Acta Petrologica Sinica,2014,30(5):1292-1306.
13 Hu H , Li JW , Lentz D ,et al .Dissolution-reprecipitation process of magnetite from the Chengchao iron deposit:Insights into ore genesis and implication for in-situ chemical analysis of magnetite[J].Ore Geology Reviews,2014,57:393-405.
14 Wen G , Li J W , Hofstra A H ,et al .Hydrothermal reequilibration of igneous magnetite in altered granitic plutons and its implications for magnetite classification schemes:Insights from the Handan-Xingtai iron district,North China Craton[J].Geochimica et Cosmochimica Acta,2017,215(15):255-270.
15 Cornell RM , Schwertmann U .The Iron Oxides:Structure,Properties,Reactions,Occurrences,and Uses [M]. 2 eds.Weinheim:Wiley-VCH,2003.
16 Einaudi M T .Description of skarns associated with porphyry copper plutons[C]//Advances in Geology of the Porphyry Copper Deposits.Tucson:The University of Arizona Press,1982:139-183.
17 Meinert L D .Skarn zonation and fluid evolution in the Groundhog Mine,central mining district,New Mexico[J].Economic Geology,1987,82(3):523-545.
18 Meinert L D , Dipple G M , Nicolescu S .World skarn deposits[C]//Economic Geology 100th Anniversary Volume.Colorado:Society of Economic Geologists,2005:299-336.
19 侯增谦,莫宣学 .“三江”地区义敦岛弧的构造—岩浆演化特征[C]//青藏高原地质文集. 北京:地质出版社,1991.
Hou Zengqian , Mo Xuanxue .Tectonic-magmatic evolution characteristics of the Yidun Island Arc in the Sanjiang area[C]//Geological Anthology of Qinghai-Tibet Plateau.Beijing:Geological Publishing House,1991.
20 曾普胜,莫宣学,喻学惠,等 .滇西北中甸地区中—酸性斑岩及其含矿性初步研究[J].地球学报,1999,20:359-366.
Zeng Pusheng , Mo Xuanxue , Yu Xuehui ,et al .Study on medium-acid porphyry and its ore-bearing properties in Zhongdian area,northwestern Yunnan[J].Acta Geoscientica Sinica,1999,20:359-366.
21 曾普胜,王海平,莫宣学,等 .中甸岛弧带构造格架及斑岩铜矿前景[J].地球学报,2004,25(5):535-540.
Zeng Pusheng , Wang Haiping , Mo Xuanxue ,et al .Tectonic setting and prospects of porphyry copper deposits in Zhongdian Island Arc[J].Acta Geoscientica Sinica,2004,25(5):535-540.
22 杨岳清,侯增谦,黄典豪,等 .中甸弧碰撞造山作用和岩浆成矿系统[J].地球学报,2002,23(1):17-24.
Yang Yueqing , Hou Zengqian , Huang Dianhao ,et al .Collision orogenic process and magmatic metallogenic system in Zhongdian Arc[J].Acta Geoscientica Sinica,2002,23(1):17-24.
23 李文昌,尹光候,卢映祥,等 .中甸普朗复式斑岩体演化及40Ar-39Ar同位素依据[J].地质学报,2009,83(10):1421-1429.
Li Wenchang , Yin Guanghou , Lu Yingxiang ,et al .The evolution and 40Ar-39Ar isotopic evidence of the Pulang complex in Zhongdian[J].Acta Geologica Sinica,2009,83(10):1421-1429.
24 侯增谦,杨岳清,曲晓明,等 .三江地区义敦岛弧造山带演化和成矿系统[J].岩石学报,2004,78(1):109-120.
Hou Zengqian , Yang Yueqing , Qu Xiaoming ,et al .Tectonic evolution and mineralization systems of Yidun Arc orogen in Sanjiang region,China[J].Acta Geologica Sinica,2004,78(1):109-120.
25 李建康,李文昌,王登红,等 .中甸弧燕山晚期成矿事件的Re-Os定年及成矿规律研究[J].岩石学报,2007,23(10):2415-2422.
Li Jiankang , Li Wenchang , Wang Denghong ,et al .Re-Os dating for ore-forming event in the late of Yanshan epoch and research of ore-forming regularity in Zhongdian Arc[J].Acta Petrologica Sinica,2007,23(10):2415-2422.
26 冷成彪,张兴春,王守旭,等 .滇西北中旬松诺含矿斑岩的锆石SHRIMP U-Pb年龄及地质意义[J].大地构造与成矿学,2008,32(1):124-130.
Leng Chengbiao , Zhang Xingchun , Wang Shouxu ,et al .Shrimp zircon U-Pb dating of the Songnuo ore-hosted porphyry,Zhongdian,northwest Yunnan,China and its geological implication[J].Geotectonica et Metallogenia,2008,32(1):124-130.
27 王守旭,张兴春,冷成彪,等 .滇西北普朗斑岩铜矿锆石离子探针U-Pb年龄:成矿时限及地质意义[J].岩石学报,2008,24(10):2313-2321.
Wang Shouxu , Zhang Xingchun , Leng Chengbiao ,et al .Shrimp U-Pb dating of the Pulang porphyry copper deposit,northwestern Yunnan,China:The ore-forming time limitation and geological[J].Acta Petrologica Sinica,2008,24(10):2313-2321.
28 庞振山,杜杨松,王功文,等 .云南普朗复式岩体锆石U-Pb年龄和地球化学特征及其地质意义[J].岩石学报,2009,25(1):159-165.
Pang Zhenshan , Du Yangsong , Wang Gongwen ,et al .Single-grain zircon U-Pb isotope ages,geochemistry and its implication of Pulang complex in Yunnan Province,China[J].Acta Petrologica Sinica,2009,25(1):159-165.
29 任江波,许继峰 ,陈建林 .中甸岛弧成矿斑岩的锆石年代学及其意义[J].岩石学报,2011,27(9):2591-2599.
Ren Jiangbo , Xu Jifeng , Chen Jianlin .Zircon geochronology and geolpgical implications of ore-forming porphyries from Zhongdian arc[J].Acta Petrologica Sinica,2011,27(9):2591-2599.
30 Leng C B , Zhang X C , Hu R Z ,et al .Zircon U-Pb and molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian,northwest Yunnan,China[J].Journal of Asian Earth Sciences,2012,60(22):31-48.
31 Leng C B , Huang Q Y , Zhang X C ,et al .Petrogenesis of the Late Triassic volcanic rocks in the southern Yidun arc,SW China:Constraints from the geochronology,geochemistry,and Sr-Nd-Pb-Hf isotopes[J].Lithos,2014,190-191(2):363-382.
32 Wang X S , Bi X W , Leng C B ,et al .Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo-Cu-(W) mineralization in the southern Yidun Arc,SW China:Implications for metallogenesis and geodynamic setting[J].Ore Geology Reviews,2014,61:73-95.
33 Wang X S , Hu R Z , Bi X W ,et al .Petrogenesis of Late Cretaceous I-type granites in the southern Yidun Terrane:New constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau[J].Lithos,2014,208-209:202-219.
34 紫金矿业集团西南矿产勘察院 .云南香格里拉县烂泥塘及外围地勘项目2013年地质年报[R].云南:紫金矿业集团西南矿产勘察院,2013.
Southwest Mineral Exploration Institute of Zijin Group.Geological annual report of Lannitang and peripheral area in Shangri-la County ,Yunnan Province[R].Yunnan:Southwest Mineral Exploration Institute of Zijin Group,2013.
35 Liu Y , Hu Z , Gao S ,et al .In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology,2008,257(1):34-43.
36 Ilton E S , Eugster H P .Base metal exchange between magnetite and a chloride-rich hydrothermal fluid[J].Geochimica et Cosmochimica Acta,1989,53(2):291-301.
37 Ray G , Webster I .Geology and chemistry of the low Ti magnetite-bearing Heff Cu-Au skarn and its associated plutonic rocks,Heffley Lake,south-central British[J].Columbia Exploration and Mining Geology,2007,16 (16):159-186.
38 Kamvong T , Zaw K , Siegele R .PIXE/PIGE microanalysis of trace elements in hydrothermal magnetite and exploration significance:A pilot study[C]//5th Australian Conference on Nuclear and Complementary Techniques of Analysis and 9th Vacuum Society of Australia.Melbourne:University of Melbourne,2007:197-200.
39 Góngora P A , Gleeson S A , Samson I M .Trace element geochemistry of magnetite and its relationship to Cu-Bi-Co-Au-Ag-U-W mineralization in the Great Bear magmatic zone,NWT,Canada[J].Economic Geology,2014,109:1901-1928.
40 潘兆橹 .结晶学与矿物学[M].北京:地质出版社,1984:67-71.
Pan Zhaolu .Crystallography and Mineralogy[M].Beijing:Geological Publishing House,1984:67-71.
41 段士刚,董满华,张作衡,等 .西天山敦德铁矿床磁铁矿原位LA-ICP-MS元素分析及意义[J].矿床地质,2014,33(6):1325-1337.
Duan Shigang , Dong Manhua , Zhang Zuoheng ,et al .A LA-ICP-MS analysis of elements inmagnetite from Dunde iron deposit in western Tianshan Mountains,Xinjiang:Constraints on genesis of the deposit[J].Mineral Deposits,2014,33(6):1325-1337.
42 Sack R O , Ghiorso M S .An internally consistent model for the thermodynamic properties of Fe-Mg-titanomagnetite-aluminate spinels[J].Contribions to Mineralogy and Petrology,1991,106:474-505.
43 Waychunas G A . Crystal chemistry of oxides and oxy-hydroxides[C]//Lindsley D H.Oxide Minerals:Petrologic and Magnetic Significance.Washington:Mineralogical Society American, 1991:11-61.
44 White A F , Peterson M L , Hochella M F .Electrochemistry and dissolution kinetics of magnetite and ilmenite[J].Geochimica et Cosmochimica Acta,1994,58(8):1859-1875.
45 Sillitoe R H .Porphyry copper systems[J].Economic Geology,2010,105(105):3-41.
46 芮宗瑶,黄崇轲,齐国明,等 .中国斑岩铜(钼)矿床[M].北京:地质出版社,1984.
Rui Zongyao , Huang Chongke , Qi Guoming ,et al .The Porphyry Cu (Mo) Deposit in China[M].Beijing:Geological Publishing House,1984.
47 Ishihara S .The magnetite-series and ilmenite-series granitic rocks[J].Shigen-Chishitsu,1977,27:293-305.
48 Spong P L .Geochemistry of Magnetite from Convergent-margin Plutonic Rocks of Australia,Japan and New Zealand[D].Auckland:University of Auckland,1998.
49 Ohmoto H .Nonredox transformations of magnetite-hematite in hydrothermal systems[J].Economic Geology,2003,98(1):157-161.
50 Mücke A , Cabral A R .Redox and nonredox reactions of magnetite and hematite in rocks[J].Chemie der Erde- Geochemistry,2005,65(3):271-278.
51 Ballard J R , Palin M J , Campbell I H .Relative oxidation states of magmas inferred from Ce(Ⅳ)/Ce(Ⅲ) in zircon:Application to porphyry copper deposits of northern Chile[J].Contributions to Mineralogy and Petrology,2002,144(3):347-364.
52 Sun W D , Arculus R J , Kamenetsky V S ,et al .Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization[J].Nature,2004,431(7011):975-978.
53 Liang H Y , Sun W D , Su W C ,et al .Porphyry copper-gold mineralization at Yulong,China,promoted by decreasing redox potential during magnetite alteration[J].Economic Geology,2009,104 (4):587-596.
54 Sun W D , Liang H Y , Ling M X ,et al .The link between reduced porphyry copper deposits and oxidized magmas[J].Geochimica et Cosmochimica Acta,2013,103(2):263-275.
55 Zhang H , Ling M X , Liu Y L ,et al .High oxygen fugacity and slab melting linked to Cu mineralization:Evidence from Dexing porphyry copper deposits,southeastern China[J].The Journal of Geology,2013,121(3):289-305.
56 Richards J P .Discussion of Sun et al:The link between reduced porphyry copper deposits and oxidized magmas[J].Geochimica et Cosmochimica Acta,2014,126(2):643-645.
57 Pokrovski G S , Dubrovinsky L S .Ion is stable in geological fluids at elevated temperatures and pressures[J].Science,2011,331(6020):1052.
58 林师整 .磁铁矿矿物化学、成因及演化的探讨[J].矿物学报,1982(3):166-174.
Lin Shizheng .A concribution on the chemistry,genesis and evolution of magnetite[J].Acta Mineralogica Sinica,1982(3):166-174.
59 Toplis M J , Carroll M R .An experimental study of the influence of oxygen fugacityon Fe-Ti oxide stability,phase relations,and mineral-melt equilibria in ferro-basaltic systems[J].Journal of Petrology,1995,36:1137-1170.
60 Sillitoe R H .Gold-rich porphyry deposits:Description of genetic models and their role in exploration and discovery[J].Economic Geology,2000,13:315-345.
61 Canil D , Grondahl C , Lacourse T ,et al .Trace elements in magnetite from porphyry Cu-Mo-Au deposits in British Columbia,Canada[J].Ore Geology Reviews,2016,72:1116-1128.
[1] 胡国朝, 杨兴科, 任仓智, 李斌, 韩珂, 安乐, 晁会霞. 陕西凤县马蹄沟—庙沟金矿区控矿构造特征[J]. 黄金科学技术, 2019, 27(4): 469-479.
[2] 位鸥祥, 张达玉, 刘劲松, 陈雪锋, 叶龙翔, 蒋华, 钱祥, 周涛发. 江南古陆西北部塔下岩体年代学及成因研究[J]. 黄金科学技术, 2018, 26(6): 689-705.
[3] 侯江龙,李建康,王登红,陈振宇,代鸿章,刘丽君. 四川甲基卡锂矿区花岗岩体中黑云母的地球化学特征及其地质意义[J]. 黄金科学技术, 2017, 25(6): 1-8.
[4] 耿国建,马宝军,丛颖,郭龙龙. 辽宁青城子逆冲推覆构造变形与金矿控矿作用探讨[J]. 黄金科学技术, 2016, 24(4): 26-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李淑芳, 于永安, 朝银银, 王美娟, 张岱, 刘君, 孙亮亮. 在辽东成矿带找寻层控型金矿床靶区[J]. J4, 2010, 18(3): 59 -62 .
[2] 刘胜光, 高海峰, 黄锁英. 电子手薄在山东焦家金矿地质专业中的应用[J]. J4, 2010, 18(3): 79 -82 .
[3] 陈学俊. 青海直亥买休玛金矿床矿体特征与找矿前景分析[J]. J4, 2010, 18(4): 50 -53 .
[4] 傅星. 青海绿梁山地区金矿床地质特征及成矿条件浅析[J]. J4, 2010, 18(4): 54 -57 .
[5] 衣存昌, 臧恩光. 黑龙江老柞山金矿成矿规律及深部找矿探讨[J]. J4, 2010, 18(4): 58 -61 .
[6] 冷寒松, 邓尧增, 胥华龙, 刘涛, 王卓. 有底柱分段崩落采矿法在焦家金矿的研究与应用[J]. J4, 2010, 18(4): 65 -67 .
[7] 刘远华, 杨贵才, 张轮, 齐金忠, 李文良. 西秦岭阳山超大型金矿床花岗岩岩石地球化学特征[J]. J4, 2010, 18(6): 1 -7 .
[8] 李涛, 王书春, 孙树提, 汪仁健, 李亚新, 王宝明. 赤峰柴胡栏子金矿区矿体成矿规律及其找矿应用[J]. J4, 2010, 18(6): 22 -25 .
[9] 江秉忠, 宋丙剑. 黑龙江嘎拉山地区金找矿潜力分析[J]. J4, 2011, 19(1): 34 -37 .
[10] 路仁江, 刘鹏金, 娄伟华. 高水固结充填采矿法工艺创新与应用[J]. J4, 2011, 19(1): 51 -54 .