img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (1): 41-51.doi: 10.11872/j.issn.1005-2518.2019.01.041

• • 上一篇    下一篇

基于裂纹扩展模型的脆性岩石破裂特征及力学性能研究

李响,怀震,李夕兵*(),张倬瑶   

  1. 1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2018-01-08 修回日期:2018-03-27 出版日期:2019-02-28 发布日期:2019-03-19
  • 通讯作者: 李夕兵 E-mail:xbli@mail.csu.edu.cn
  • 作者简介:李响(1983-),男,河南郑州人,副教授,从事岩石力学与岩土工程方面的教学与研究工作。lixiang2006lixiang@hotmail.com|李夕兵(1962-),男,湖南宁乡人,教授,博士生导师,从事采矿与岩土工程方面的教学与研究工作。xbli@mail.csu.edu.cn
  • 基金资助:
    国家重点研发计划“深部高应力诱导与能量调控理论”(编号:2016YFC0600706)和国家自然科学基金青年基金项目“岩石亚临界裂纹扩展的时间相关性研究”(编号:11402311)联合资助

Study on Fracture Characteristics and Mechanical Properties of Brittle Rock Based on Crack Propagation Model

Xiang LI,Zhen HUAI,Xibing LI*(),Zhuoyao ZHANG   

  1. 1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2018-01-08 Revised:2018-03-27 Online:2019-02-28 Published:2019-03-19
  • Contact: Xibing LI E-mail:xbli@mail.csu.edu.cn

摘要:

为了探究初始微裂纹参数分布对岩石破裂特征及力学性能的影响,进一步系统地了解脆性岩石破裂演化过程,依据线弹性断裂力学理论,建立了非均质性二维细观弹性损伤模型,并运用FLAC2D数值分析软件,数值模拟研究了单轴压缩条件下不同形态岩石试样的破裂过程。研究结果表明,当初始微裂纹长度和角度服从不同的随机分布时,岩石材料表现出不同的破裂特征,其中初始微裂纹长度和角度均服从正态分布时,岩石破裂区域较完整;初始微裂纹长度或角度服从均匀分布和指数分布时,岩石破裂区域较分散;初始微裂纹角度对于解释脆性岩石单轴抗压试验时岩石试样出现剪切破坏和劈裂破坏的原因具有一定的指导意义,且当初始微裂纹角度均值ɑ=45°时,模型具有最小的峰值强度和轴向最大应变。模型还模拟了脆性岩石单轴抗压试验、巴西劈裂试验和断裂韧度试验的演化过程,模拟结果与试验结果具有较高的一致性。

关键词: 脆性岩石, 初始微裂纹, 裂纹扩展, 破裂模式, 断裂韧度, 数值模拟

Abstract:

In order to study the influence of initial microcrack parameter distribution on fracture characteristics and mechanical properties of brittle rocks and further understand systematically the fracture evolution of brittle rocks, a two-dimensional mesoscopic elastic damage model of heterogeneity was established based on the theory of elastic fracture mechanics.The proposed model scheme was implemented through the two dimentional finite difference program FLAC2D.The zones in the model behave elastically before failure occurs, and lose tensile or shear load bearing capacity at corresponding mode of failure.Microcracks with different length and orientation distributions were defined in the zones of the model.The failure of the zone was controlled by the fracture propagation status of the microcrack inside.A failure criterion was adopted based on the stress intensity factor of the microcrack in each zone.The fracture process of rock specimens with different morphologies under distinct loading conditions was simulated using the proposed numerical model.The influence of the microcrack distributions on both the macroscopic fracture pattern and the mechanical response of the numerical model was analyzed.The results show that when the microcrack lengths and orientations are defined by different distributions,the different macroscopic fracture modes can be resulted.When the microcrack lengths and orientations are defined by normal distribution, failure band with clear shape can be formed.Failure zones are relatively dispersed if the microcrack lengths or orientations obey uniform or exponential distributions. For the reasons of shear failure and splitting failure of rock samples during the uniaxial compression test of brittle rock, the initial microcrack orientation was of guiding significance.When the mean initial microcrack orientation ɑ=45°, the minimum peak strength and axial maximum strain of model were obtained.The fracturing process of brittle rock uniaxial compression test, Brazilian splitting test and fracture toughness test were simulated.Good consistency was obtained with respect to both the mechanical response and fracture patterns.The model is valuable in rendering reliable results for rock mechanical tests which are difficult to realize in the laboratory. The inclusion of the influence of microcracks in simulating mechanical behavior of rock material also provide important insights into the failure process of rock under external load.

Key words: brittle rock, initial microcrack, crack propagation, failure mode, fracture toughness, numerical simulation

中图分类号: 

  • TU452

图1

不同形状参数β时Weibull分布的概率密度函数变化图"

图2

圆柱形标准试样的二维非均质模型"

图3

模型中某单元内初始微裂纹受力扩展图"

表1

数值模型基本参数"

参数数值参数数值
弹性模量E/GPa53.5形状参数β15
泊松比μ0.25摩擦系数0.3
体积模量K/GPa35.67Ⅰ型断裂韧度K/(MPa?m1/21.88
剪切模量G/GPa21.4Ⅱ型断裂韧度K/(MPa?m1/24.87

图4

单轴压缩状态下模型内部初始微裂纹分布对其破裂特征的影响"

图5

轴向拉伸状态下模型内部初始微裂纹分布对其破裂特征的影响"

图6

单轴压缩状态下不同初始微裂纹均值角度的岩石模型的宏观破裂状态"

图7

单轴压缩状态下不同初始微裂纹均值角度的岩石模型的应力—应变曲线"

图8

单轴抗压和断裂韧度试验示意图"

表2

单轴抗压试验所得花岗岩基本力学参数"

试样编号单轴抗压强度/MPa弹性模量E/GPa泊松比μ
均值137.0648.100.26
H1121.3440.350.20
H2154.0957.440.24
H3128.1049.270.26
H4136.8643.330.33
H5144.9350.110.25

表3

断裂韧度试验所得花岗岩基本力学参数"

断裂韧度类型编号P/kNr/mmR/mmB/mmNK/(MPa?m1/2
Ⅰ型G1-011.648.525.225.61.1651.093
G2-010.428.524.526.10.987
G3-012.168.425.224.61.181
G4-011.108.725.425.21.063
G5-011.088.324.725.31.061
均值11.288.4825.025.361.077
Ⅱ型G1-26.710.868.425.325.21.8991.673
G2-26.710.688.524.425.71.682
G3-26.710.048.624.625.21.609
G4-26.710.228.525.426.21.517
G5-26.711.288.325.225.61.707
均值10.628.4624.9825.581.638

表4

数值模型基本参数"

参数数值参数数值
弹性模量E48.1形状参数β15
泊松比μ0.26摩擦系数μ0.3
体积模量K/GPa33.4Ⅰ型断裂韧度K1.077
剪切模量G/GPa19.09Ⅱ型断裂韧度K1.638

图9

单轴压缩状态下模型和试样的宏观破裂状态"

图10

单轴压缩状态下模型和试样的应力—应变曲线"

图11

拉伸状态下模型和试样的宏观破裂状态"

图12

拉伸状态下模型和试样的荷载—位移曲线"

图13

断裂韧度试验中模型和试样的宏观破裂状态"

图14

断裂韧度试验中模型和试样的峰值荷载图"

1 冯亚飞. 单轴压缩下裂纹扩展相似模型试验研究[D]. 重庆:重庆大学,2012.
FengYafei.Study on the Similar Model Test of Fissure Propagation under Uniaxial Compression[D]. Chongqing:Chongqing University,2012.
2 AtkinsonB K. Fracture Mechanics of Rock[M]. London:Academic Press INC,1987.
3 WongR H C,ChauK T,TangC,et al. Analysis of crack coalescence in rock-like materials containing three flaws part I:Experimental approach[J]. International Journal of Rock Mechanics and Mining Sciences,2001,38(7):909-924.
4 杨圣奇,吕朝辉,渠涛. 含单个孔洞大理岩裂纹扩展细观试验和模拟[J]. 中国矿业大学学报,2009,38(6):774-781.
YangShengqi,ChaohuiLü,QuTao.Investigations of crack expansion in marble having a single pre-existing hole: Experiment and simulations[J]. Journal of China University of Mining & Technology,2009,38(6):774-781 .
5 王士民,刘丰军,叶飞,等. 含预制裂纹脆性岩石破坏数值模拟研究[J]. 岩土力学,2006,27(增1):235-238.
WangShimin,LiuFengjun,YeFei,et al.The numerical simulation to model failure of brittle rock with prefab crack[J]. Rock and Soil Mechanics,2006,27(Supp.1):235-238.
6 王卫华, 李坤, 严哲,等. 节理压缩闭合试验前后表面形态特征变化分析[J]. 黄金科学技术,2016, 24(6):84-89.
WangWeihua,LiKun,YanZhe,et al. Analysis on changes of surface morphological characteristics of joint under compression closed testing[J]. Gold Science and Technology,2016,24(6):84-89.
7 TangC A,LinP,WongR H C,et al. Analysis of crack coalescence in rock-like materials containing three flaws—Part Ⅱ: Numerical approach[J].International Journal of Rock Mechanics and Mining Sciences,2001,38(7):925-939.
8 黄明利,唐春安,朱万成.岩石破裂过程的数值模拟研究[J]. 岩石力学与工程学报,2000,19(4):468-471.
HuangMingli,TangChun’an,ZhuWancheng.Numerical simulation on failure process of rock[J].Chinese Journal of Rock Mechanics and Engineering,2000,19(4):468-471.
9 梁正召,唐春安,李厚祥,等.单轴压缩下横观各向同性岩石破裂过程的数值模拟[J].岩土力学,2005,26(1):57-62.
LiangZhengzhao,TangChun’an,LiHouxiang,et al.A numerical study on failure process of transversely isotropic rock subjected to uniaxial compression [J].Rock and Soil Mechanics,2005,26(1):57-62.
10 李地元, 李夕兵, 李春林,等.单轴压缩下含预制孔洞板状花岗岩试样力学响应的试验和数值研究[J]. 岩石力学与工程学报, 2011, 30(6):1198-1206.
LiDiyuan,LiXibing,LiChunlin,et al.Experimental and numerical studies of mechanical response of plate-shape granite samples containing prefabricated holes under uniaxial compression[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(6): 1198 -1206.
11 KonietzkyH, HeftenbergerA, FeigeM. Life-time prediction for rocks under static compressive and tensile loads: A new simulation approach[J]. Acta Geotechnica,2009,4(1):73-78.
12 GolshaniA,OkuiY,OdaM,et al.A micromechanical model for brittle failure of rock and its relation to crack growth observed in triaxial compression tests of granite[J].Mechanicas of Materials,2006,38(4):287-303.
13 KranzR L. Microcracks in rocks:A review[J]. Tectonophysics,1983,100(1):449-480.
14 潘别桐,徐光黎. 岩体节理几何特征的研究现状及趋向[J]. 工程勘察,1989(5):23-26.
PanBietong,XuGuangli.Research status and trend of rock joint geometry characteristics[J].Geotechnical Investigation and Surveying,1989(5):23-26.
15 LuY L,ElsworthD,WangL G. Microcrack-based coupled damage and flow modeling of fracturing evolution in permeable brittle rocks[J].Computers & Geotechnics, 2013,49(4):226-244.
16 LiX,KonietzkyH.Simulation of time-dependent crack growth in brittle rocks under constant loading conditions[J].Engineering Fracture Mechanics,2014,119(3):53-65.
17 LiX,KonietzkyH.Numerical simulation schemes for time-dependent crack growth in hard brittle rock[J].Acta Geotechnica,2015,10(4):513-531.
18 Itasca Consulting Group,Inc. FLAC: Fast Lagrangian Analysis of Continua—Theory and Background[M]. Minnea-Polis:Itasca Consulting Group,2005.
19 WeibullW.A statistical distribution function of wide applicability[J].Journal of Applied Mechanics,1951,13(3):293-297.
20 ZhuW C,TangC A.Micromechanical model for simulating the fracture process of rock[J].Rock Mechanics and Rock Engineering,2004,37(1):25-56.
21 AndersonT L.Fracture Mechanics-Fundamentals and Applications[M]. Florida USA:CRC Press,1991.
22 黄作宾. 断裂力学基础[M]. 武汉:中国地质大学出版社,1991:121-128.
HuangZuobin. Fracture Mechanics Foundation[M]. Wuhan:China University of Geosciences Press,1991:121-128.
23 LiX,KonietzkyH,LiX B. Numerical study on time depedent and time independent fracturing processes for brittle rocks[J].Engineering Fracture Mechanics,2016,163:89-107.
24 AtkinsonB K.Subcritical crack propagation in rocks:Theory,experimental results and applications[J].Journal of Structural Geology,1982,4(1):41-56.
25 DongS,WangY,XiaY. Stress intensity factors for central cracked circular disk subjected to compression[J]. Engineering Fracture Mechanics,2004,71(7):1135-1148.
26 LiuH Y,KouS Q,LindqvistP A,et al. Numerical modelling of the heterogeneous rock fracture process using various test techniques[J]. Rock Mechanics and Rock Engineering,2007,40(2):107-144.
27 孙杨,罗黎明,邓红卫. 金属矿山深部采场稳定性分析与结构参数优化[J]. 黄金科学技术,2017,25(1):99-105.
SunYang,LuoLiming,DengHongwei. Stability analysis and parameter optimization of stope in deep metal mines[J]. Gold Science and Technology,2017,25(1):99-105.
28 李夕兵,姚金蕊,杜坤. 高地应力硬岩矿山诱导致裂非爆连续开采初探——以开阳磷矿为例[J]. 岩石力学与工程学报,2013,32(6):1101-1111.
LiXibing,YaoJinrui,DuKun.Preliminary study for induced fracture and non-explosive continuous mining in high-geostress hard rock mine:A case study of Kaiyang phosphate mine[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(6):1101-1111.
[1] 陈冲,李夕兵,冯帆. 诱导巷道的围岩松动破坏区数值研究[J]. 黄金科学技术, 2018, 26(6): 771-779.
[2] 刘连生,钟清亮,闫雷,钟文,梁龙华. 频繁生产爆破加载下饱水岩体累积损伤效应声波测试研究[J]. 黄金科学技术, 2018, 26(6): 750-760.
[3] 彭博. 库水位骤降耦合不同类型降雨泥岩边坡渗透稳定性数值模拟研究[J]. 黄金科学技术, 2018, 26(5): 647-655.
[4] 李光,马凤山,刘港,郭捷,郭慧高,寇永渊. 金川矿区深部巷道支护效果评价及参数优化研究[J]. 黄金科学技术, 2018, 26(5): 605-614.
[5] 胡建华,任启帆,亓中华,张纪伟. 卧虎山铁矿采场极限暴露面积回归优化模型[J]. 黄金科学技术, 2018, 26(4): 503-510.
[6] 胡桂英, 刘科伟, 杜鑫, 李萧翰. 光面掏槽爆破技术的研究及其在巷道掘进中的应用[J]. 黄金科学技术, 2018, 26(3): 349-356.
[7] 汪海波, 魏国力, 宗琦, 徐颖. 节理发育岩体巷道掘进爆破数值模拟与应用研究[J]. 黄金科学技术, 2018, 26(3): 342-348.
[8] 杨明财, 盛建龙, 叶祖洋, 董舒. 基于FlAC3D的露天矿边坡稳定性及影响因素敏感性分析[J]. 黄金科学技术, 2018, 26(2): 179-186.
[9] 任伟成,乔登攀,周志伟. 立式砂仓尾砂体积分数随砂仓高度变化规律研究[J]. 黄金科学技术, 2018, 26(1): 64-73.
[10] 马凤山,李克蓬,杜云龙,侯成录,李威,张国栋 . 三山岛金矿海底开采F1断裂防突结构可能的破坏形式分析 [J]. 黄金科学技术, 2017, 25(5): 47-56.
[11] 白朝阳,王国伟,张鹏,刘拴平. 水平采空区群条件下矿柱回采爆破位置研究[J]. 黄金科学技术, 2017, 25(4): 81-86.
[12] 孙杨,罗黎明,邓红卫. 金属矿山深部采场稳定性分析与结构参数优化[J]. 黄金科学技术, 2017, 25(1): 99-105.
[13] 陈建宏,邓东升,唐海琼. 基于有限元结合MATLAB数值模拟的铀矿山氡扩散迁移研究[J]. 黄金科学技术, 2016, 24(5): 67-72.
[14] 盛勇,刘庭耀,韩丽辉,刘青. 含金废液脱氰过程固—液搅拌的数值模拟[J]. 黄金科学技术, 2016, 24(5): 108-114.
[15] 赵国彦,侯俊,张小瑞,李地元,王涛. 磷石膏膏体充填体力学特性研究[J]. 黄金科学技术, 2016, 24(5): 7-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!