img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2018, Vol. 26 ›› Issue (4): 481-491.doi: 10.11872/j.issn.2095-4050.000000000000

• • 上一篇    下一篇

熊耳山地区槐树坪金矿床黄铁矿特征及其地质意义

张蕾蕾1,张静1(),王琦崧1,陈良2,陈叙安1   

  1. 1中国地质大学(北京)地球科学与资源学院,北京 100083
    2五矿勘查开发有限公司,北京 100010
  • 收稿日期:2018-04-18 修回日期:2018-07-07 出版日期:2018-08-31 发布日期:2018-10-17
  • 作者简介:张静(1977-),女,河南焦作人,教授,博士生导师,从事矿床地球化学研究工作。zhangjing@cugb.edu.cn
  • 基金资助:
    国家自然科学基金项目“甘肃霍勒扎德盖超大型金矿床成矿作用研究”(41572065);西秦岭卡林—类卡林型金矿床的成矿地质背景与叠加成矿作用研究(41030423);五矿勘查开发有限公司科技找矿项目“河南省嵩县金多金属矿集区成矿规律研究及找矿预测”(3-4-2013-123)

Characteristics of Pyrite from Huaishuping Gold Deposit in Xiong’ershan District and Its Geological Significance

Leilei ZHANG1,Jing ZHANG1(),Qisong WANG1,Liang CHEN2,Xu’an CHEN1   

  1. 1School of Earth Sciences and Resources,China University of Geosciences,Beijing 100083,China
    2Minmetals Exploration & Development Co.,Ltd.,Beijing 100010,China
  • Received:2018-04-18 Revised:2018-07-07 Online:2018-08-31 Published:2018-10-17

摘要:

熊耳山地区槐树坪金矿床位于华北克拉通南缘,矿体赋存于中元古界熊耳群火山岩地层中,受断裂控制。矿石类型为蚀变岩型和石英脉型,主要的金属矿物有黄铁矿、方铅矿、闪锌矿和黄铜矿。热液成矿过程划分为早、中、晚3个阶段,分别形成石英—黄铁矿脉、石英—多金属硫化物脉和石英—方解石脉。早阶段黄铁矿为自形粒状,粒径为0.8~2.0 mm;中阶段黄铁矿为半自形、他形粒状,粒径为0.30~0.45 mm;晚阶段黄铁矿为自形—半自形粒状,粒径为0.1~3.0 mm。电子探针分析结果表明:该矿区黄铁矿S元素质量分数为51.25%~52.71%,Fe元素质量分数为45.78%~48.11%。其中,成矿阶段黄铁矿的Cu、Zn、Sb元素质量分数分别为0.11%、0.13%和0.12%。Co/Ni比值为0.57~0.60;黄铁矿的δFe-δS 主量元素投图和Co-Ni-As质量分数三角图研究表明,槐树坪金矿床成矿流体来源为中低温变质热液。

关键词: 黄铁矿, 标型特征, 电子探针, 槐树坪金矿床, 熊耳山地区, 豫西

Abstract:

Huaishuping gold deposit is located in the Xiong’ershan district,southern margin of the North China Craton.It is hosted by the Mesoproterozoic volcanic rocks of Xiong’er Group.The occurrence of gold orebodies is controlled by faults.Its ore types are altered rock and quartz vein,and the major metal minerals are pyrite,galena,sphalerite and chalcopyrite.The hydrothermal ore-forming process can be divided into three stages:quartz-pyrite vein (early),quartz-polymetallic vein (middle) and quartz-calcite vein (late).In the early stage,pyrites are euhedral granular,with size of 0.8~2.0 mm;in the middle stage,they are subhedral and xenomorphic granular of 0.30~0.45 mm;and in the late stage,pyrite is euhedral-subhedral granular,and the particle size is 0.1~3.0 mm.The electron microprobe analysis showed that S element content in the pyrite was 51.25%~52.71%,and Fe element content was 45.78%~48.11%.The Cu,Zn and Sb elements content of pyrites in the middle stage were 0.108%,0.131% and 0.115% respectively.TheδFe andδS plot of major elements and the Co-Ni-As triangular diagram of pyrites study shows that the source of ore-forming fluid in Huaishuping gold deposit is medium-low temperature metamorphic hydrothermal fluid.

Key words: pyrite, typomorphic characteristics, electron microprobe, Huaishuping gold deposit, Xiong’ershan district, western Henan

中图分类号: 

  • P618.51

图1

熊耳山地区大地构造位置(a)、地质简图(b)(据文献[11]修改) 1 新近系;2.古近系;3.栾川群;4.官道口群;5.熊耳群;6.太华群;7.花岗岩;8.花岗闪长岩;9.石英(花岗)斑岩;10.断裂;11.金矿;12.钼矿;13.银—铅—锌矿;14.研究区位置;矿床名称(1-七亩地沟;2-槐树坪;3-瑶沟;4-东湾;5-九丈沟;6-小南沟—通峪沟;7-庙岭;8-下蒿坪;9-店房;10-前河;11-祁雨沟;12-公峪—小公峪;13-高都川;14-栗子沟;15-柿树底;16-松里沟;17-黄沟;18-北岭;19-红庄;20-元岭;21-康山;22-上宫;23-青岗坪;24-小池沟;25-虎沟;26-金家湾;27-吉家洼;28-桐树沟;29-上道回;30-前范岭;31-纸房;32-雷门沟;33-大石门沟;34-黄水庵;35-安沟;36-鱼池岭;37-罗村;38-三道庄;39-南泥湖;40-上房沟;41-石瑶沟;42-龙门店;43-寨凹;44-铁炉坪;45-嵩坪沟;46-沙沟)"

图2

槐树坪金矿区地质图(据文献[12]修改) 1.第四系冲洪积物;2.古近系古新统高峪沟组;3.长城系鸡蛋坪组上段凝灰岩;4.长城系鸡蛋坪组上段英安岩;5. 长城系鸡蛋坪组中段安山岩;6.花岗岩脉;7.花岗岩;8.断层;9.地名;10.矿脉及编号"

图3

槐树坪金矿床矿石样品特征 (a)细脉浸染状矿石;(b)浸染状矿石;(c)脉状—网脉状矿石;(d)碎裂角砾状矿石"

图4

不同中段、不同成矿阶段黄铁矿产出特征 (a)中阶段黄铁矿、黄铜矿呈细脉状侵入早阶段乳白色粗粒石英;(b)中阶段脉状多金属硫化物侵入早阶段粗粒石英;(c)镜下中阶段方铅矿充填于黄铁矿裂隙;(d)晚阶段石英方解石细脉侵入早期粗粒石英;(e)中阶段细粒细粒石英、黄铁矿、黄铜矿组合和早阶段粗粒石英、粗粒黄铁矿组合;(f)镜下中阶段黄铜矿、方铅矿、闪锌矿组合侵入于早阶段粗粒黄铁矿;(g)晚阶段方解石石英细脉错断中阶段黄铁矿细脉;(h)晚阶段方解石石英脉充填于早阶段粗粒石英构造裂隙;(i)镜下中阶段闪锌矿沿早阶段黄铁矿裂隙发育"

图5

槐树坪金矿床常见矿石矿物及组构显微镜下特征 (a)中阶段自形—半自形黄铁矿与黄铜矿共生;(b)中阶段方铅矿生长于早阶段角砾状黄铁矿裂隙中;(c)中阶段脉状、浸染状黄铁矿;(d)中阶段闪锌矿生长于黄铁矿裂隙中;(e)中阶段脉状黄铁矿与黄铜矿共生;(f)中阶段破碎角砾状黄铁矿与闪锌矿共生;(g)中阶段闪锌矿生长于早阶段黄铁矿裂隙中;(h)早阶段自形—半自形黄铁矿;(i)中阶段闪锌矿与黄铁矿共生;(j)中阶段方铅矿生长于阶段破碎角砾状黄铁矿裂隙中;(k)早阶段自形—半自形粒状黄铁矿;(l)中阶段黄铜矿、方铅矿、闪锌矿和黄铁矿共生组合Gn-方铅矿;Py-黄铁矿;Sp-闪锌矿;Ccp-黄铜矿"

图6

槐树坪金矿床主要矿物生成顺序"

图7

槐树坪金矿床不同成矿阶段黄铁矿双目镜下的晶体形态 (a)早期五角十二面体黄铁矿{210}(红色框内,下同);(b)早阶段立方体黄铁矿{100};(c)中阶段五角十二面体黄铁矿{210};(d)中阶段黄铁矿八面体、五角十二面体和立方体聚形{111}+{210}+{100};(e)晚阶段立方体黄铁矿{100};(f)晚阶段五角十二面体黄铁矿{210}"

表1

黄铁矿电子探针分析结果"

样品编号 成矿阶段 海拔标高/m S Fe Co Ni Cu Zn As Se Ag Sb Te 总和
HSPD06B11-1 465 52.16 47.04 - 0.02 0.09 0.17 0.06 - 0.25 0.24 0.10 100.13
HSPD06B11-2 465 52.67 47.32 0.21 0.05 - 0.09 - 0.03 0.07 0.04 0.05 100.53
HSPD06B11-3 465 51.41 47.20 0.06 0.03 - 0.39 0.09 0.01 0.05 0.09 0.10 99.43
HSPD06B12-1 465 52.06 48.11 0.23 - 0.30 0.10 - - - - - 100.80
HSPD06B12-2 465 51.87 47.39 0.16 - 0.13 - - - - - - 99.55
HSPD06B12-3 465 52.12 47.42 - 0.06 - 0.28 - 0.07 0.14 - - 100.09
HSPD06B12-4 465 52.15 47.71 0.25 - - - 0.14 0.01 0.08 - 0.13 100.47
HSPD06B12-5 465 51.91 47.97 0.07 - - 0.14 - 0.06 - - - 100.15
HSPD06B13-1 465 51.32 47.10 0.24 - 0.33 0.05 - - - 0.28 0.02 99.34
HSPD06B13-2 465 51.59 47.71 0.34 0.12 0.13 - 0.23 0.18 0.12 - - 100.42
HSPD06B13-3 465 51.47 47.65 0.29 0.06 - - 0.06 0.04 - - - 99.57
HSPD06B06-1 465 51.58 47.08 - 0.16 0.03 0.12 0.03 0.03 - 0.13 - 99.16
HSPD06B06-3 465 51.69 46.87 0.16 0.13 0.21 0.12 - - - 0.14 - 99.32
HSPD06B06-4 465 52.06 47.29 0.07 - 0.13 - - - 0.12 - - 99.67
HSPD06B06-5 465 51.54 46.67 0.15 0.31 0.12 - - - - 0.17 0.05 99.01
HSPD06B06-6 465 51.99 47.25 0.09 0.22 0.20 0.64 - - - 0.25 0.04 100.68
HSPD16B01-1 570 51.58 47.39 0.24 0.11 0.20 - - - 0.27 - - 99.79
HSPD16B01-2 570 52.01 47.35 - 0.07 - - 0.02 0.11 0.17 0.13 0.25 100.11
HSPD16B01-3 570 51.64 47.36 0.07 0.18 - 0.01 0.10 0.02 0.04 - - 99.42
HSPD16B01-4 570 51.34 47.53 - 0.17 0.09 0.62 - 0.07 0.02 0.11 0.15 100.10
HSPD16B01-5 570 51.82 47.74 0.04 0.07 0.18 0.26 0.01 0.14 - 0.05 0.09 100.40
HSPD18B01-1 570 51.98 47.67 0.14 0.32 - 0.07 - - 0.21 - - 100.39
HSPD18B01-2 570 51.59 48.09 - - 0.11 - - - 0.01 - 0.08 99.88
HSPD18B01-3 570 52.02 47.51 0.15 0.17 - - - - - 0.04 0.33 100.22
HSPD20B01-1 520 52.07 47.48 0.28 0.19 - - 0.11 0.14 0.06 - - 100.33
HSPD20B01-2 520 52.71 47.33 0.28 0.07 - - 0.04 - 0.20 0.18 0.30 101.11
HSPD20B01-3 520 51.25 46.80 - 0.05 0.01 0.11 - - - - - 98.22
HSPD20B01-4 520 51.58 47.13 0.23 0.09 - - - - - 0.28 0.01 99.32

表2

槐树坪金矿不同阶段黄铁矿样品中Co、Ni、As含量(%),δFe、δS值及Co/Ni比值平均值"

样品编号 成矿阶段 δFe δS Co Ni As Co/Ni
HSPDO6B06 0.479 -3.167 0.114 0.200 0.054 0.57
HSPDO6B11 1.368 -2.563 0.090 0.033 0.050 2.73
HSPDO6B12 2.513 -2.672 0.142 0.012 0.028 11.83
HSPDO6B13 2.012 -3.723 0.290 0.060 0.097 4.83
HSPD16B01 1.985 -3.315 0.070 0.120 0.026 0.58
HSPD18B01 2.592 -2.969 0.097 0.163 - 0.60
HSPD20B01 1.364 -2.895 0.198 0.100 0.038 1.98

图8

槐树坪金矿不同矿石中的黄铁矿δFe-δS特征(底图据文献[24]修改)"

图9

槐树坪金矿床中不同黄铁矿Co,Ni,As质量分数三角图解(据文献[25]修改) I-地下卤水淋滤型金矿床黄铁矿;Ⅱ-岩浆热液型金矿床黄铁矿;Ⅲ-变质热液型金矿床黄铁矿;Ⅳ-火山与次火山岩热液型金矿床黄铁矿"

1 GuoBaojian,LiYongfeng,WangZhiguang,et al.Type,metallogenetic regularities,mineralization model and prospecting proposal in the Xiong’ershan district[J].Geology and Exploration,2005,41(5):43-47.
2 ZhangJ,ChenY J,PirajnoF,et al.Geology,C-H-O-S-Pb isotope systematics and geochronology of the Yindongpo gold deposit,Tongbai mountains,central China:Implication for ore genesis[J].Ore Geology Reviews,2013,53:343-356.
3 ZhangJ,ChenYJ,YangY,et al.Lead isotope systematics of the Weishancheng Au-Ag belt,Tongbai mountains,central China:Implication for ore genesis[J].International Geology Reviews,2011,53(5/6):656-676.
4 陈衍景.造山型矿床、成矿模式及找矿潜力[J].中国地质,2006,33:1181-1196.
ChenYanjing.Orogenic-type deposits and their metallogenic model and exploration potential[J].Geology in China,2006,33:1181-1196.
5 范宏瑞,谢亦汉,王英兰.豫西上宫构造蚀变岩型金矿成矿过程中的流体—岩石反应[J].岩石学报,1998,14(4):529-541.
FanHongrui,XieYihan,WangYinglan.Fluid-rock interaction during mineralization of the Shanggong structure-controlled alteration-type gold deposit in western Henan Province,central China[J].Acta Petrologica Sinica,1998,14(4):529-541.
6 陈衍景,林治家,PirajnoF,等.东秦岭上宫金矿流体成矿作用:稳定同位素地球化学研究结果[J].矿物岩石,2004,24(3):13-21.
ChenYanjing,LinZhijia,PirajnoF,et al.Hydrothermal metallogeny of the Shanggong gold deposit,east Qinling:Study on the stable isotope geochemistry[J].Journal of Mineralogy and Petrology,2004,24(3):13-21.
7 高灶其,李云,梁黎春.河南省嵩县东湾金矿成矿地质特征及成因分析[J].华南地质与矿产,2008(2):31-36.
GaoZaoqi,LiYun,LiangLichun.Geological characteristics and genesis of Dongwan gold deposit in Song County,Henan Province[J].Geology and Mineral Retrans-sources of South China,2008(2):31-36.
8 庞振山,徐文超,周奇明,等.河南省嵩县萑香洼金矿矿床地球化学特征[J].矿产与地质,2008,22(6):481-491.
PangZhenshan,XuWenchao,ZhouQiming,et al.Geochemical characteristics of Huanxiangwa gold deposit,Henan Province[J].Mineral Resources and Geology,2008,22(6):481-491.
9 张木辰,李喜山,徐海安,等.试论河南省嵩县槐树坪金矿矿床成因及找矿方向[J].采矿技术,2010,10(1):83-88.
ZhangMuchen,LiXishan,XuHai’an,et al.Discussion on the genesis and prospecting direction of the Huaishuping gold deposit in Song County,Henan Province[J].Mining Technology,2010,10(1):83-88.
10 吴发富,龚庆杰,石建喜,等.熊耳山矿集区金矿控矿地质要素分析[J].地质与勘探,2012,48(5):865-875.
WuFafu,GongQingjie,ShiJianxi,et al.Ore-controlling geological factors of gold deposits in the Xiong’ershan region,western Henan Province[J].Geology and Exploration,2012,48(5):865-875.
11 DengJ,GongQ J,WangC M,et al.Sequence of Late Jurassic-Early Cretaceous magmatic-hydrothermal events in the Xiong’ershan region,central China:An overview with new zircon U-Pb geochronology data on quartz porphyries[J].Journal of Asian Earth Sciences,2014,79:161-172.
12 王炯辉,陈良,苏蔷薇,等.河南省嵩县槐树坪金矿床地质、同位素地球化学特征与成矿作用[J].矿床地质,2016,35(3):524-538.
WangJionghui,ChenLiang,SuQiangwei,et al.Geology,isotopic geochemistry and metallogenesis of Huaishuping gold deposit in Songxian County,Henan Province[J].Mineral Deposits,2016,35(3):524-538.
13 徐红伟,杨九鼎,王国库.河南省嵩县槐树坪金矿成矿地质特征及成因分析[J].河南理工大学学报,2009,28(6):719-726.
XuHongwei,YangJiuding,WangGuoku.Metallogenetic feature and origin analysis of Huaishuping gold deposit of Song County in Henan[J].Journal of Henan Polytechnic University,2009,28(6):719-726.
14 彭丽娜,魏俊浩,孙晓雁,等.浙东南怀溪铜金矿床黄铁矿标型特征及其地质意义[J].地质与勘探,2009,45(5):577-587.
PengLina,WeiJunhao,SunXiaoyan,etal.Typomorphic characteristics of pyrites in the Huaixi copper-gold deposit,southeastern Zhejiang Province and its geological significance[J].Geology and Exploration,2009,45(5):577-587.
15 魏佳林,曹新志,王庆峰,等.新疆阿希金矿床黄铁矿标型特征及其地质意义[J].地质科技情报,2011,30(5):89-96.
WeiJialin,CaoXinzhi,WangQingfeng,et al.Typomorphic characteristics and geological significance of the pyrites from Axi gold deposit,Xinjiang,China[J].Geological Science and Technology Information,2011,30(5):89-96.
16 翟德高,刘家军,韩思宇,等.黑龙江三道湾子碲金矿床黄铁矿标型特征及矿床变化保存过程分析[J].地质学报,2013,87(1):81-90.
ZhaiDegao,LiuJiajun,HanSiyu,et al.Typomorphic characteristics of pyrite and processes of changes and preservation of the Sandaowanzi telluride-gold deposit in Heilongjiang Province[J].Acta Geologica Sinica,2013,87(1):81-90.
17 余文林,葛文胜,廖华,等.新疆西准噶尔提依尔金矿黄铁矿热电性与微量元素特征及其地质意义[J].现代地质,2018(1):66-76.
YuWenlin,GeWensheng,LiaoHua,et al.Thermoelectricity and trace element characteristics of pyrites from Tiyier gold deposit in west Junggar,Xinjiang and their geological significance[J].Geoscience,2018(1):66-76.
18 李逸凡,李洪奎,汤启云,等.山东旧店金矿黄铁矿标型特征及其地质意义[J].黄金科学技术,2015,23(2):45-50.
LiYifan,LiHongkui,TangQiyun,et al.Typomorphic characteristics and geological significance of pyrite in Jiudian gold deposit,Shandong Province[J].Gold Science and Technology,2015,23(2):45-50.
19 陶诗龙,赖健清,张建东,等.广西龙头山金矿床黄铁矿标型特征及其地质意义[J].地质找矿论丛,2017,32(1):33-41.
TaoShilong,LaiJianqing,ZhangJiandong,et al.Typomorphic features of pyrites from the Longtoushan gold deposit,Guangxi Province and the geological significance[J].Contributions to Geology and Mineral Retrains-sources Research,2017,32(1):33-41.
20 申俊峰,李胜荣,马广钢,等.玲珑金矿黄铁矿标型特征及其大纵深变化规律与找矿意义[J].地学前缘,2013,20(3):55-75.
ShenJunfeng,LiShengrong,MaGuanggang,et al.Typomorphic characteristics of pyrite from the Linglong gold deposit:Its vertical variation and prospecting significance[J].Earth Science Frontiers,2013,20(3):55-75.
21 ZhangJ,DengJ,ChenH Y,et al.LA-ICP-MS trace element analysis of pyrite from the Chang’an gold deposit,Sanjiang region,China:Implication for ore-forming process[J].Gondwana Research,2014,26:557-575.
22 ZhangJ,LiL,Gilbert,et al.LA-ICP-MS and EPMA studies on the Fe-S-As minerals from the Jinlongshan gold deposit,Qinling Orogen,China:Implications for ore-forming processes[J].Geological Journal,2014,49:482-500.
23 李永峰.豫西熊耳山地区中生代花岗岩类时空演化与钼(金)成矿作用[D].北京:中国地质大学(北京),2005.
LiYongfeng.The Temporal-Spatial Evolution of Mesozoic Granitoids in Xiong’ershan Area and Their Relationship to Molybdenum-Gold Mineralization[D].Beijing:China University of Geosciences(Beijing),2005.
24 严育通,李胜荣,贾宝剑,等.中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析[J].地学前缘,2012,19(4):214-226.
YanYutong,LiShengrong,JiaBaojian,et al.Composition typomorphic characteristics and statistic analysis of pyrite in gold deposits of different genetic types[J].Earth Science Frontiers,2012,19(4):214-226.
25 宋学信,张景凯.中国各种成因黄铁矿的微量元素特征[J].中国地质科学院矿床地质研究所所刊,1986(2):166-175.
SongXuexin,ZhangJingkai.Minor elements in pyrites of various genetic types from China[J].Bulletin of the Institute of Mineral Deposits Chinese Academy of Geological Sciences,1986(2):166-175.
26 周起凤.胶东乳山英格庄金矿成因矿物学与深部远景研究[D].北京:中国地质大学(北京),2010.
ZhouQifeng.Genetic Mineralogy and Deep Prospects of the Yinggezhuang Gold Deposit in Rushan County,Jiaodong[D].Beijing:China University of Geosciences(Beijing),2010.
27 陈衍景,倪培,范宏瑞,等.不同类型热液金矿系统的流体包裹体特征[J].矿物学报,2007,23(9):2085-2108.
ChenYanjing,NiPei,FanHongrui,et al.Fluid inclusion characteristics of different types of hydrothermal gold deposit systems[J].Acta Mineralogica Sinica,2007,23(9):2085-2108.
[1] 杜胜江, 温汉捷, 秦朝建, 卢树藩, 燕永锋, 杨光树. 滇东南老君山矿集区三保锰银矿床碳氧同位素特征及其意义[J]. 黄金科学技术, 2018, 26(3): 261-269.
[2] 杨玮, 董萍, 邓忠. 某重选尾矿金浮选试验研究[J]. 黄金科学技术, 2018, 26(2): 203-211.
[3] 李佳峰, 杨洪英, 佟琳琳, 金哲男, 张登超. 抛刀岭难处理金精矿细菌氧化—提金实验研究[J]. 黄金科学技术, 2018, 26(2): 248-253.
[4] 宋学文,朱加乾,罗增鑫,陈波. 某氰渣工艺矿物学及金浮选工艺研究[J]. 黄金科学技术, 2018, 26(1): 89-97.
[5] 侯江龙,李建康,王登红,陈振宇,代鸿章,刘丽君. 四川甲基卡锂矿区花岗岩体中黑云母的地球化学特征及其地质意义[J]. 黄金科学技术, 2017, 25(6): 1-8.
[6] 郑慕婷,张术根,贺忠春. 湖南康家湾金银多金属矿床金银赋存状态及其与成矿演化的关系[J]. 黄金科学技术, 2017, 25(6): 31-42.
[7] 王晓青,杨兴科,芮会超. 内蒙古岱王山金矿黄铁矿形态标型及其变化规律与找矿意义[J]. 黄金科学技术, 2017, 25(5): 39-46.
[8] 刘纯波,张术根,黄超文,刘炫,莫京龙,李凯林. 云南东川播卡金矿床黄铁矿成因矿物学特征研究[J]. 黄金科学技术, 2016, 24(5): 40-47.
[9] 冯章标,俞献林,陈江安. 安徽某金铅锌硫化矿选矿新工艺试验研究[J]. 黄金科学技术, 2016, 24(3): 87-93.
[10] 许涛,廖美婷,衷水平,苏妤芸,何美丽. 紫金山黄铁矿的第一性原理和前线轨道理论分析[J]. 黄金科学技术, 2015, 23(4): 57-62.
[11] 梁长利,覃文庆,陈景河,杨杭渠,衷水平. 氯离子对载金黄铁矿生物氧化的影响[J]. 黄金科学技术, 2015, 23(4): 86-90.
[12] 李逸凡,李洪奎,汤启云,禚传源,耿科,梁太涛. 山东旧店金矿黄铁矿标型特征及其地质意义[J]. 黄金科学技术, 2015, 23(2): 45-50.
[13] 许涛,衷水平,殷志刚. 碱性环境中黄铁矿表面反应机理研究[J]. 黄金科学技术, 2014, 22(4): 72-77.
[14] 喻春,熊韬,赵维新. 衍生指数法在阳山金矿激电测深中的应用[J]. 黄金科学技术, 2014, 22(3): 43-47.
[15] 宋凯,郝晓圆,汪江河,赵春和,孔源,牛树银. 豫西上宫金矿构造控矿特征及成矿作用探讨[J]. 黄金科学技术, 2013, 21(6): 30-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 闫杰, 覃泽礼, 谢文兵, 蔡邦永. 青海南戈滩—乌龙滩地区多金属地质特征与找矿潜力[J]. J4, 2010, 18(4): 22 -26 .
[2] 傅星. 青海绿梁山地区金矿床地质特征及成矿条件浅析[J]. J4, 2010, 18(4): 54 -57 .
[3] 刘远华, 杨贵才, 张轮, 齐金忠, 李文良. 西秦岭阳山超大型金矿床花岗岩岩石地球化学特征[J]. J4, 2010, 18(6): 1 -7 .
[4] 林海平. 河台金矿剪切带构造演化及其与金成矿关系[J]. J4, 2010, 18(6): 30 -33 .
[5] 吴富强, 梁胜跃. 云南东川地区播卡金矿成矿规律研究[J]. J4, 2011, 19(1): 1 -5 .
[6] 张志乾, 王建宁, 曲弘范. 华铜铜矿床成矿模式及其在外围成矿预测中的应用[J]. J4, 2011, 19(1): 38 -41 .
[7] 路仁江, 刘鹏金, 娄伟华. 高水固结充填采矿法工艺创新与应用[J]. J4, 2011, 19(1): 51 -54 .
[8] 张华全,张维昕,李洪杰. 山东胶莱盆地金矿成矿条件及找矿方向[J]. J4, 2008, 16(2): 12 -17 .
[9] 李枝梅, 李贵生, 马登庆. 全数字化测图的几点体会[J]. J4, 2007, 15(1): 62 -64 .
[10] 曹忠, 叶晖, 杨中乾. 桃花嘴铜金铁矿床成矿作用与矿床成因的探讨[J]. J4, 2005, 13(1-2): 6 -9 .