img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2013, Vol. 21 ›› Issue (5): 165-168.

• “第一届黄金及贵金属关键冶炼技术与装备创新研讨会”会议专栏 • 上一篇    

BCO光度法测定氨氰体系溶液中铜氨络离子态铜量

张园1,黄丽2,刘海波1   

  1. 1.厦门紫金矿冶技术有限公司,福建  厦门   361101;
    2.厦门出入境检验检疫局,福建  厦门   361026
  • 收稿日期:2013-07-02 修回日期:2013-09-03 出版日期:2013-10-28 发布日期:2014-04-02
  • 作者简介:张园(1984-),女,福建厦门人,助理工程师,从事矿产品及水质分析检测工作.yanzi.985@163.com

Determination of Copper in Copper Ammonia Complex of Cyanide-Ammonia System by BCO Photometric Method

ZHANG Yuan1,HUANG Li2,LIU Haibo1   

  1. 1.Xiamen Zijin Mining and Metallurgy Technology Co.,Ltd.,Xiamen    361101,Fujian,China;
    2.Xiamen Entry-exit Inspection and Quarantine Bureau,Xiamen   361026,Fujian,China
  • Received:2013-07-02 Revised:2013-09-03 Online:2013-10-28 Published:2014-04-02

摘要:

本次工作建立了氨氰体系溶液中铜氨络离子态铜量的BCO测定方法,解决了多价态铜离子络合物体系溶液中铜氨离子的选择性测定问题。在pH值为9.0的氨水—氯化铵缓冲溶液中,用柠檬酸铵溶液掩蔽其他的金属离子,采用分光光度法测定氨氰体系溶液中铜氨络离子态铜(Ⅱ)的含量。铜氨络离子态铜(Ⅱ)与BCO形成蓝色络合物,其最大吸收波长位于600 nm,线性相关系数达0.9999,检出限为0.010 mg/L。对氨氰体系溶液进行加标回收,加标回收率为97%~102%,相对标准偏差(n=6)在0.09%~0.46%之间。该方法不经过复杂的处理步骤,操作便捷、测定迅速且准确可靠。

关键词: BCO光度法, 氢氰体系, 铜氨络离子

Abstract:

BCO determination method of copper ammonia complex ion in ammonia cyanide solution was established to solve the problem of determine copper ammonia complex ion content in multi-valence copper ion complex solution.Ammonium citrate solution was used to mask other metal ions in the ammonia-ammonium chloride buffer solution(pH=9.0) and the Cu(Ⅱ) content was determined by BCO photometric method in the ammonia solution cyanide system as copper ammonia complex ion.Cu(Ⅱ) in copper ammonia complex ion reacted with BCO to form blue complex,which has a maximum absorption wavelength of 600 nm,with a linear correlation coefficient of 0.9999 and a detection limit of 0.010 mg/L.The recovery rate of adding standard was 97% to 102%, and the relative standard deviation(n=6)was 0.09% to 0.46%.The method does not require complex processing steps and has the advantages of simple, rapid, accurate, reliable and easy operation.

Key words: BCO photometric method, cyanide-ammonia system, copper ammonia complex ion

中图分类号: 

  • TF03

[1] 林鸿汉.氨氰法从铜金精矿热压酸浸渣中提金工艺研究[J].黄金科学技术,2005,13(5):33-36.
[2] 崔永霞,沈艳.难处理金矿石提炼技术研究进展[J].黄金科学技术,2007,15(3):53-57.
[3] 李俊萌.难处理金矿石预处理方法研究现状及其发展趋势[J].稀有金属,2003,27(4):478-481,490.
[4] 衷水平.含铜难处理金精矿焙烧—酸浸—氰化提金工艺研究[J].黄金科学技术,2013,21(2):82-85.
[5] 陈聪,姚香.难处理金矿石预处理方法简述[J].黄金科学技术,2004,12(4):27-30.
[6] 杨玮.复杂难处理金精矿提取及综合回收的基础研究与应用[D].长沙:中南大学,2011.
[7] 方兆珩,夏光祥.高砷难处理金矿的提金工艺研究[J].黄金科学技术,2004,12(2):35-40.
[8] 夏光祥,涂桃枝,石伟,等.氨氰法从含铜金矿石中提金研究与工业实践[J].黄金,1995,16(7):26-29.
[9] 程东会,王金祥,李国斌,等.含铜金矿石氨氰体系浸金机理研究[J].有色金属(冶炼部分),2009,(4):30-33.
[10] 周世杰,王成功,张淑敏,等.某含铜金精矿氰化浸出提金试验研究[J].金属矿山,2004,(2):38-40.
[11] 薛丽华,童雄.铜、金浸出过程中铜氨配合物的作用机理[J].湿法冶金,2008,27(1):10-14.
[12] 崔毅琦.含铜难处理金矿石氨氰法浸出和吸附试验与机理研究[D].昆明:昆明理工大学,2006:3-13.
[13] 吴桂生,周全.BCO光度法测定微量铜[J].理化检验(化学分册),2000,36(2):82-83.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!