img

QQ群聊

img

官方微信

高级检索

J4 ›› 2012, Vol. 20 ›› Issue (3): 56-65.

• 矿产勘查 • 上一篇    下一篇

电气石研究进展及其找矿意义

黄雪飞1,2,张宝林1,李晓利1,沈晓丽1,2,郭志华1,2   

  1. 1.中国科学院地质与地球物理研究所矿产资源研究重点实验室,北京   100029;
    2.中国科学院研究生院,北京   100049
  • 收稿日期:2012-03-28 修回日期:2012-05-16 出版日期:2012-06-28 发布日期:2012-11-12
  • 作者简介:黄雪飞(1985-),女,湖北荆州人,硕士研究生,从事矿床学研究工作.feifei871018@126.com
  • 基金资助:

    “十一五”科技支撑计划重大项目二级课题“典型覆盖区金属矿综合地球物理定位预测技术开发及应用”(编号:2006BAB01A02)资助.

Research Progress of Tourmaline and its Prospecting Significance

HUANG Xuefei1,2,ZHANG Baolin1,LI Xiaoli1,SHEN Xiaoli1,2,GUO Zhihua1,2   

  1. 1.Key Laboratory of Mineral Resources,Institute of Geology and Geophysics,Chinese Academy of Sciences,Bejing
    100029,China;
    2.Graduate University of Chineses Academy of Sciences,Beijing   100049,China
  • Received:2012-03-28 Revised:2012-05-16 Online:2012-06-28 Published:2012-11-12

摘要:

电气石族矿物化学成分多样,同一位置类质同像替代多。电气石形成的温度压力范围很广,能够在地壳的温度压力范围内稳定存在,并且与多种地质流体保持平衡。电气石结构内主微量元素的扩散速率极低。电气石矿物硬度较大,形成后能够经受住剥蚀、风化、成岩和变质作用过程而保存其形成时的组成与结构。通过对组成电气石的主微量元素、稳定同位素(包括B、Li、Sr和Nd等)和放射性同位素(K-Ar、Ar-Ar等)的分析可以示踪电气石及其共生矿物形成时的成岩成矿环境,包括流体的来源、氧化还原状态、温度压力、形成时代及其在矿床勘探方面的指示意义等。

关键词: 电气石, 成分判别, 硼同位素, 形成时代, 找矿意义

Abstract:

Tourmaline mineral has various chemical composition and multi-isomorphism on the same position.Their formation temperature and pressure range is very extensive,can be stable in the temperature of the earth’s crust pressure range,and can keep balance with various geological fluid.The main and trace elements spread rate of tourmaline structure is extremely low.And tourmaline mineral hardness is bigger,after forming can withstand erosion,weathering,diagenesis,metamorphism process and save the composition and structure when they formed.Through analysis the trace elements,stable isotopes(including B,Li,Nd,etc),radioactive isotopes (K-Ar,Ar-Ar,etc) which composite tourmaline can tracer the diagenesis and mineralization environment,including the source of the fluid,redox condition,temperature and pressure,formation age and mineral instruction significance in the exploration.

Key words: Tourmaline, Ingredients discrimination, Boron isotope, Formation age, Prospecting significance

中图分类号: 

  • P618.51

[1] Hawthorne F C,Henry D J.Classification of the minerals of the tourmaline group [J].Eur J Mineral,1999,11(2):201-215.
[2] Povondra P.The crystal chemistry of tourmalines of the schorl-dravite series[J].Acta Univers.Carol.Geol,1981,3:223-264.
[3] Dyar M D,Francis C A,Wise M A,et al.Complete chemical characterization of tourmaline[J].Eos,Transactions of the American Geophysical Union, 1994:187.
[4] Grice J D,Ercit T S,Hawthorne F C.Povondraite,a redefinition of the tourmaline ferridravite[J].American Mineralogist,1993,78:433-436.
[5] Henry D J,Novak M,Hawthorne F C,et al.Nomenclature of the tourmaline-supper-group minerals[J].American Mineralogist,2011,96:895-913.
[6] Hawthorne F C,Dirlam D M.Tourmaline the indicator mineral:From atomic arrangement to Viking navigation[J].Elements,2011,7(5):307-312.
[7] Van Hinsberg V J,Henry D J,Dutrow B L.Tourmaline as a Petrologic Forensic Mineral:A Unique Recorder of its Geologic Past[J].Elements,2011,7(5):327-332.
[8] Werding G,Schreyer W.Experimental studies on borosilicates and selected borates.In:Grew E S,Anovitz LM(eds)Boron:Mineralogy,Petrology and Geochemistry[J].Reviews in Mineralogy,1996, 33(1):117-163.
[9] Kawakami T.Boron depletion controlled by the breakdown of tourmaline in the migmatite zone of the Aoyama area,Ryoke metamorphic belt,southwestern Japan [J].Canadian Mineralogist,2001,39(6):1529-1546.
[10] Thomson J A.A rare garnet-tourmaline-sillimanite-biotite-ilmenite-quartz assemblage form the granulite-facies of south-central Massachusetts[J].American Mineralogist,2006,91:1730-1738.
[11] Slack J F,Palmer M R,Stevens B P J,et al.Origin and significance of tourmaline-rich rocks in the Broken Hill District,Australia[J].Economic Geology,1993,88:505-541.
[12] Dutrow B L,Henry D J.Tourmaline:A Geologic DVD [J].Elements,2011,7(5):301-306.
[13] Krosse S.Hochdrucksynthese,Stabilitat und Eigenschaften der Borsilikate Dravit und Kornerupin,sowie Darstellung und Stabilitytsverhalten eines neuen Mg-Al-borates[C].Thesis,Ruhr-Universitat Bochum,1995.
[14] Ota T,Kobayashi K,Katsura T,et al.Tourmaline breakdown in a pelitic system:implications for boron cycling through subduction zones[J].contributions to mineralogy and petrology,2008,155(1):19-32.
[15] Henry D J,Dutrow B L.Metamorphic tourmaline and its petrologic applications [J]. Reviews in Mineralogy and Geochemistry,1996,33(1):503-557.
[16] Slack J F.Tourmaline associations with hydrothermal ore deposits [J].Reviews in Mineralogy and Geochemistry,1996,33(1):559-643.
[17] Van Hinsberg V J,Henry D J,Dutrow B L.Tourmaline as a Petrologic Forensic Mineral:A Unique Recorder of Its Geologic Past[J].Elements,2011,7(5):327-332.
[18] 王进军,赵枫.电气石的化学特征与相关矿床的关系[J].地质找矿论丛,2002,17(3):161-174.
[19] 卢宗柳.我国电气石矿床类型及其地质特征[J].矿产与地质,2008, 22(2):174-178.
[20] Slack J F,Trumbull R B.Tourmaline as a recorder of ore-forming processes [J].Elements,2011,7(5):321-326.
[21] 黄作良,莫珉,祖恩东.辽东硼矿床中电气石的矿物学特征及成因意义[J].岩石矿物学杂志,1996,15(4):365-378.
[22] Yves F,Martine L,Jorge L.Oxydation exprimentale de Fe-tourmalines et correlation avec une deprotonation des groups hydroxyle[J].C R Geoscience,2002,334(4):245-249.
[23] Jiang Kan,Sun Tieheng,Sun Lina,et al.Adsorption characteristics of copper,lead,zinc and cadmium ions by  tourmaline[J].Environmental Sciences,2006,18(6):1221-1225.
[24] 谭运金.华南地区电气石花岗岩的主要特征[J].岩石学 报,1990,11(4):46-53.
[25] 毛景文,王平安,王登红,等.电气石对成岩成矿环境的示踪性及应用条件[J].地质论评,1993,39(6):497-507.
[26] 沈建忠,韩发.电气石岩—— 一种和矿化有关的岩石类型[J].矿床地质,1993,11(4):384-388.
[27] 蒋少涌,于际民,倪培,等.电气石—成岩成矿作用的灵敏示踪剂[J].地质论评,2000,46(6):594-604.
[28] Hellingwerf RH.,Gatedal K,Gallagher V. et al.Tourmaline in the central Swedish ore district[J].Mineralium Deposita,1994,29(2):189-205.
[29] Jiang S Y,Palmer M R,Peng Qiming,et al.Chemical and stable isotopic compositions of Proterozoic metamorphosed evaporites and associated tourmalines from the Houxianyu borate deposit,eastern Liaoning,China[J].Chemical Geology,1997,135(3-4):189-211.
[30] London D,Manning D A C.Chemical variation and significance of tourmaline from southwest  England[J].Economic Geology,1995,90:495-519.
[31] 黄小勇,张辉,唐勇,等.广西银屏富B花岗岩及其晶洞中电气石的化学组成特征以及对岩浆热液演化的指示[J].矿物学报,2008,28(1):25-34.
[32] Henry D J,Guidotti C V.Tourmaline as a petrogenetic indicator mineral-An example from the staurolite-grade metapelites of NW Maine [J].American Mineralogist,1985,70(1-2):1-15.
[33] Shabaga B M,Fayek M,Hawthorne F C.Boron and lithium isotopic compositions as provenance indicators of Cu-bearing tourmalines [J].Mineralogical Magazine,2010,74(2):241-255.
[34] Palmer M R,Swihart G H.Boron isotope geochemistry:an overview, Rev [J].Mineral,1996,33:709-744.
[35] Palmer M R,Slack J F.Boron isotopic composition of tourmaline from massive sulphide deposits and tourmalinites,Contrib[J].Contributions of Mineralogy Petrology,1989,103(4):434-451.
[36] Jiang S Y,Yang J H,Novák M,et al.Chemical and boron isotopic compositions of tourmaline from the Lavicky leucogranite,Czech Republic[J].Geochemical,2003,37:545-556.
[37] Williamson B J,Müller A,Shail R K.Source and partitioning of B and Sn in the Cornubian batholith of southwest England[J].Ore Geology Reviews,2010,38:1-8.
[38] Nakano T,Nakamura E.Boron isotope geochemistry of metasedimentary rocks and tourmalines in a subduction zone metamorphic suite[J].Physics of the Earth and Planetory Interiors,2001,127:233-252.
[39] Bebout G E,Nakamura E.Record in metamorphic  tourmalines of subduction- zone devolatilization and boron  cycling [J].Geology,2003,31(5):407.
[40] Marschall H R,Altherr R,Kalt A,et al.Detrital,metamorphic and metasomatic tourmaline in high-pressure metasediments from Syros (Greece):intra-grain boron isotope patterns determined by secondary-ion mass spectrometry[J].Contributions of Mineralogy Petrology,2008,155:703-717.
[41] Ota T,Kobayashi K,Kunihiro T,et al.Boron cycling by sub-ducted lithosphere;insights from diamondiferous tourmaline from the Kokchetav ultrahigh-pressure metamorphic belt [J]. Geochimica et Cosmochimica Acta, 2008b,72(14):3531-3541.
[42] Jiang S Y,Palmer M R,Slack J F,et al.Boron isotope systematics of tourmaline formation in the Sullivan Pb-Zn-Ag deposit,British Columbia,Canada[J].Chemical Geology,1999,158(1-2):131-144.
[43] Jiang S Y,Radvanec M,Nakamura E,et al.Chemical and boron isotopic variations of tourmaline in the Hnilec granite-related hydrothermal system,Slovakia:Constraints on magmatic and metamorphic fluid evolution[J].Litho,2008,106:1-11.
[44] Mlynarczyk M S J,Williams-Jones A E.Zoned tourmaline associated with cassiterite:Implications for fluid evolution and tin mineralization in the San Rafael Sn-Cu deposit,southeastern Peru[J].Canadian Mineralogist,2006,44:347-365.
[45] Slack J F.Tourmaline associations with hydrothermal ore deposits. In:Grew ES, Anovitz LM (eds) Boron:Mineralogy,Petrology and Geochemistry (second printing with corrections and additions)[J].Reviews in Mineralogy,2002,33:559-644.
[46] Maclean,W H.Rare earth element mobility at constant inter-REE ratios in the alteration zone at the Phelps Dodge massive sulfide deposit,Matagami,Quebec[J].Mineralium Deposita,1988,23(4):231-238.
[47] Sverjensky,D A.Europium redox equilibria in aqueous solution[J].Earth Planetary Science Letters,1984,67(1):70-78.
[48] Jiang S Y,Yu J M,Lu J J.Trace and rare earth element geochemistry in tourmaline and cassiterite from the Yunlong tin deposit,Yunnan,China:implication for migmatitic-hydrothermal fluid evolution and ore genesis[J].Chemical Geology,2004,209(3-4):193-213.
[49] Ootes L,Goff S,Jackson V A,et al.Timing and thermo-chemical constraints on multi-element mineralisation at the Nori/RA Cu-Mo-U prospect,Great Bear magmatic zone,Northwest Territories,Canada [J].Mineralium Deposita,2010,45:549-566.
[50] Jiang S Y,Palmer M R,Yeats C J.Chemical and boron isotopic compositions of tourmaline from the Archean Big Bell and Mount Gibson gold deposits,Murchison Province,Yilgarn Craton,Western Australia [J].Chemical Geology,2002,188(3-4):229-247.
[51] Ertl A,Marschall H R,Giester G,et al.Metamorphic ultrahigh-pressure tourmaline:Structure,chemistry,and correlations to PT conditions [J].American Mineralogist,2010,95(1):1-10.
[52] Kawakami T,Ikeda T.Boron in metapelites controlled by the breakdown of tourmaline and retrograde formation of borosilicates in the Yanai area, Ryoke metamorphic belt,SW Japan[J].Contributions to Mineralogy and Petrology,2003,145(2):131-150.
[53] Van Hinsberg V J,Schumacher J C.The geothermobarometric potential of tourmaline,based on experimental and natural data [J].American Mineralogist,2009,94(5-6):761-770.
[54] Van Hinsberg V J,Schumacher J C.Intersector element partitioning in tourmaline:a potentially powerful single crystal thermometer [J].Contributions to Mineralogy and Petrology,2007,153(3):289-301.
[55] Martínez J M,Torres-Ruiz J,Pesquera A,et al.Geological relationships and U-Pb zircon and 40Ar/39Ar tourmaline geo-chronology of gneisses and tourmalinites from the Nevado-Filabride complex (western Sierra Nevada,Spain):Tectonic implications [J].Lithos,2010,119(3-4):238-250.
[56] Hellingwerf R H,Gatedal K,Gallagher V,et al.Tourmaline in the central Swedish ore district[J].Mineralium Deposita,1994,29(2):189-205. 
[57] Franco Pirajno.The FeO/(FeO + MgO) ratio of tourmaline:a useful indicator of spatial variations in granite related hydro-themal mineral deposits[J].Journal of Geochemical Exploration,1992,42(2-3):371-381.
[58] Dariush Esmaeily,Trumbull R B,Mastaneh Haghnazar,et al.Chemical and boron isotopic composition of hydrothermal tourmaline from scheelite-quartz veins at Nezamabad,western Iran[J].European Journal of Mineralogy,2009,21(2):347-360.
[59] Palmer,M R.Boron isotope systematics of hydrothermal fluids and tourmalines:a synthesis [J].Chemical Geology:Isotope Geoscience section,1991,94(2):111-121.

[1] 王营田,王山章,李波,韩宇. 山东大庄子金矿床1号脉成矿规律及深部探矿预测[J]. J4, 2012, 20(4): 123-127.
[2] 王杏村,牛树银,燕建设,孙卫志,孙爱群,冯建之,陈超,徐建昌,王社全,崔燮祥,王铮,李斌. 小秦岭中矿带金矿田成矿构造分析[J]. J4, 2012, 20(4): 96-103.
[3] 李军峰,武际春,刘维民,蒋善波,彭洪迎,朱随洲,生显军,赵红浩,王兵. 山东玲珑金矿田51号脉成矿规律研究及远景预测[J]. J4, 2012, 20(4): 113-116.
[4] 孔令芝,朱随洲,韩云松,张龙,储照波,李新年,吴海庆,杨桂彬,叶官威,信太岭,李军峰. 山东玲珑断裂带地球物理特征综合分析及找矿预测[J]. J4, 2012, 20(4): 117-122.
[5] 刘新会,陈彩华,赵天心,张科利,陈力子,刘爽. 西秦岭寨上金矿原生晕地球化学特征及成矿预测[J]. J4, 2012, 20(4): 7-15.
[6] 刘金友,刘淑亮,高池兴,顿美霞. 山东西涝口金矿地球化学特征研究[J]. J4, 2012, 20(4): 16-20.
[7] 姜维明,齐婓,孟伟,许建波,刘秋杰,吕军恩,原少波,孙健. 山东玲珑矿田东风矿区成矿规律及远景预测[J]. J4, 2012, 20(4): 21-25.
[8] 金念宪,王君亭,孙之夫,李文,廖昌溪,所建成,刘祥朋. 韧性剪切带控制的“焦家式”金矿及其找矿方向[J]. J4, 2012, 20(4): 26-32.
[9] 黄广环. 内蒙古中东部重要成矿带地质特征及找矿潜力分析[J]. J4, 2012, 20(4): 33-38.
[10] 孙杰,李瑞军,邵周伟,徐芬. 山东谢家沟矿区金矿体地质特征及其深部资源详查评价[J]. J4, 2012, 20(4): 39-42.
[11] 郑卫军,刘新会,陈彩华. 甘肃寨上金矿床1∶5万水系沉积物测量综合评价[J]. J4, 2012, 20(4): 43-48.
[12] 马凤山,赵海军,郭捷,王杰,魏爱华. 山东望儿山矿区浅部复采对井筒稳定性影响的数值模拟[J]. J4, 2012, 20(4): 49-53.
[13] 王义春,李波,张永林,韩宇,任晓明,王召敏,王京聪,周奇明. 电吸附化探新方法在麻湾金矿区寻找深部矿体的研究[J]. J4, 2012, 20(4): 62-66.
[14] 刘桂阁,李艳秋,常春郊,丛润祥,张慧玉,陈勇敢,王美娟,朝银银. 区域化探数据处理的综合异常法研究[J]. J4, 2012, 20(4): 67-70.
[15] 王恩敬,郭广军,赵荣欣,王彦伟,于晓杰,吕广耀,王伟涛. 山东寺庄金矿床构造—矿化网络结构研究及应用[J]. J4, 2012, 20(4): 76-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!