img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2024, Vol. 32 ›› Issue (5): 916-925.doi: 10.11872/j.issn.1005-2518.2024.05.202

• 采选技术与矿山管理 • 上一篇    下一篇

局部制冷降温技术在井下长距离掘进中的应用

郭忠磊1(),崔嵛1(),王春龙2   

  1. 1.山东理工大学资源与环境工程学院,山东 淄博 255049
    2.山东黄金集团有限公司,山东 济南 250100
  • 收稿日期:2024-07-05 修回日期:2024-08-20 出版日期:2024-10-31 发布日期:2024-09-19
  • 通讯作者: 崔嵛 E-mail:guozhonglei@sd-gold.com;yucui@sdut.edu.cn
  • 作者简介:郭忠磊(1987-),男,山东淄博人,硕士研究生,从事矿山热害防控技术研究工作。guozhonglei@sd-gold.com
  • 基金资助:
    国家自然科学基金项目“地下矿山腔室溢流火羽流特性及其与水平巷道风流作用机理”(51604169)

Application of Local Refrigeration and Cooling Technology in Underground Long-distance Excavation Tunnel

Zhonglei GUO1(),Yu CUI1(),Chunlong WANG2   

  1. 1.School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255049, Shan-dong, China
    2.Shandong Gold Group Co. , Ltd. , Jinan 250100, Shandong, China
  • Received:2024-07-05 Revised:2024-08-20 Online:2024-10-31 Published:2024-09-19
  • Contact: Yu CUI E-mail:guozhonglei@sd-gold.com;yucui@sdut.edu.cn

摘要:

为解决玲珑金矿深部长距离掘进巷道的高温问题,结合井下低温涌水条件,通过对输冷方式和换热方式进行分析,制定了以水源热泵技术为基础的局部制冷降温技术方案,采用理论计算和模拟仿真方法,模拟不同供风温度和供风量条件下巷道的温度场变化情况,分析得出了最佳制冷参数,并开展了制冷系统的设备选型和现场应用。结果表明:-750 m中段长距离掘进工作面的制冷最佳温度为10 ℃,供风量为5.0 m3/s;根据制冷方案和制冷参数分析结果对局部制冷降温技术进行了应用,有效解决了系统供水不足和供风沿途冷损大等难题,掘进工作面温度由37.0 ℃降至26.2 ℃,降幅达10.8 ℃,距工作面50 m范围内运输巷道温度平均降幅分别为8.9 ℃和2.9 ℃,掘进巷高温环境得到明显改善。该局部制冷通风降温技术的应用对类似矿山的深部热害治理具有技术参考价值。

关键词: 矿业工程, 深井, 热害, 长距离掘进, 局部制冷降温技术, 玲珑金矿

Abstract:

As the issue of elevated temperatures in deep mining operations becomes increasingly significant,the implementation of cooling technologies has become widespread.Among these,water source heat pump cooling technology,which utilizes low-temperature subterranean water as a cooling source,offers distinct advantages over traditional ice cooling and air conditioning systems.Specifically,it is characterized by superior energy efficiency,environmental sustainability,and operational effectiveness.The west wing excavation tunnel of the Linglong gold mine at the -750 m section is influenced by factors such as inlet air temperature,ground temperature,and equipment heat dissipation,leading to a working face temperature of up to 37 ℃.Efforts to mitigate this by increasing the inlet air volume and altering the ventilation method,have proven ineffective in significantly reducing the working face temperature.To address this issue,this study leverages the presence of substantial low-temperature groundwater, conducts an analysis of cooling and heat transfer mechanisms,and proposes a localized cooling technology scheme based on water source heat pump technology.Utilizing theoretical calculations and simulation methodologies,the variations in the temperature field of the tunnel under different supply air temperature and volume conditions were simulated.This analysis facilitated the determination of optimal cooling parameters and cooling capacity.Additionally,the selection of equipment and the practical application of the cooling system were conducted.The findings indicate that a localized cooling scheme,which involves positioning the refrigeration unit at the working face,offers a simpler structure,and is more economical and practical.The optimal cooling temperature for long-distance excavation in the -750 m section is determined to be 10 ℃,with a supply air volume of 5.0 m3/s and a cooling capacity of 300.36 kW,serving as a reference for equipment selection.During the on-site application,the establishment of a water storage tank and the implementation of spray cooling measures effectively addressed the issues of insufficient water supply in the refrigeration system and significant cooling loss along the air supply route.Consequently,the temperature at the excavation working face decreased from 37.0 ℃ to 26.2 ℃,a reduction of 10.8 ℃.The average temperature reduction within a 50- meter radius of the working face and the transportation roadway was 8.9 ℃ and 2.9 ℃,respectively.This indicates a significant improvement in the high-temperature conditions of the excavation tunnel.The implementation of this localized cooling technology provides a valuable technical reference for addressing deep heat issues in similar mining environments.

Key words: mineral engineering, deep mines, heat damage, long distance excavation, local refrigeration and cooling technology, Linglong gold mine

中图分类号: 

  • TD727

图1

-750 m中段平面图"

图2

制冷系统方案图"

图3

巷道几何模型构建"

表1

模拟工况"

模拟工况温度/℃风量/(m3·s-1模拟工况温度/℃风量/(m3·s-1
工况18.53工况9133
工况28.54工况10134
工况38.55工况11135
工况48.56工况12136
工况5113工况13153
工况6114工况14154
工况7115工况15155
工况8116工况16156

图4

风温为8.5 ℃条件下巷道温度场分布图"

图5

风温为11 ℃条件下巷道温度场分布图"

图6

风温为13 ℃条件下巷道温度场分布图"

图7

风温为15 ℃条件下巷道温度场分布图"

图8

不同进风温度条件下巷道温度的变化情况"

图9

不同供风量条件下巷道温度的变化情况"

图10

制冷机组"

图11

制冷机组硐室及风筒"

图12

风筒降温措施"

图13

巷道降温前后温度的变化情况"

Bian Menglong, Du Cuifeng, Miao Yujia,2018a.Distribution law of air flow temperature field in drivage roadway[J].Nonferrous Metal,70(3) :107-112.
Cai Meifeng, Ji Duo, Chen Xiangsheng,et al,2021.Development strategy for Co-mining of the deep mineral and geothermal resources[J].Strateg Study of Chinese Academy of Engineerng,23(6):43-51.
Cai Meifeng, Ma Minghui, Pan Jiliang,et al,2022.Co-mining of mineral and geothermal resources:A state-of-the-art review and future perspectives[J].Chinese Journal of Engineering,44(10):1669-1681.
Cai Meifeng, Xue Dinglong, Ren Fenhua,2019.Current status and development strategy of metal mines[J].Chinese Journal of Engineering,41(4):417-426.
Du Cuifeng, Xu Zhe, Tang Zhanxin,et al,2016.Numerical simulation of ventilation and cooling in excavation tunnel and analysis of influencing factors[J].Metal Mine,45(2):151-155.
Guo Duiming, Li Guoqing, Hou Jie,et al,2022.Optimization of local ventilation parameters of deep mine excavation roadway based on FLUENT[J].Gold Science and Technology,30(5):753-763.
Guo Pingye, Zhu Yanyan,2011.Back-Analysis algorithm of cooling load in deep mines[J].Journal of Mining and Safety Engineering,28(3):483-487.
He Guojia, Ruan Guoqiang, Yang Zhuang,2011.Research and application on preventive measure against heat disaster in Zhaolou coal mine[J].Journal of China Coal Society,36(1):101-104.
He M C,2009.Application of HEMS cooling technology in deep mine heat hazard control[J].International Journal of Mining Science and Technology,19(3):269-275.
He M C, Cao X L, Xie Q,et al,2010.Principles and technology for stepwise utilization of resources for mitigating deep mine heat hazards[J].International Journal of Mining Science and Technology,20(1):20-27.
He Manchao, Guo Pingye,2013.Deep rock mass thermodynamic effect and temperature control measures[J].Chinese Jou-rnal of Rock Mechanics and Engineering,32(12):2377-2393.
He Manchao, Guo Pingye, Chen Xueqian,et al,2015a.Resea-rch on characteris of high-temperature and control of heat-harm of Sanhejian coal mine[J].Chinese Journal of Rock Mechanics and Engineering,29(Supp.1):2593-2597.
He Manchao, Guo Pingye,2015b.Field experimental study on heat disaster control in Xuzhou mining area[J].Coal Engineering,47(4):1-4.
He Manchao, Xu Min,2008.Research and development of HEMS cooling system and heat-harm control in deep mine[J].Chinese Journal of Rock Mechanics and Engineering,27(7):1353-1361.
Ji Haiwei, Zhang Jin, Fan Hong,et al,2022.Development of mine cooling system with mine influx water cold-heat method[J].Journal of Xi’an University of Science and Technology,42(1) :83-90.
Li Xiaojian, Jia Mintao, Zhao Xu,et al,2024.Numerical simulation study on ventilation and cooling of deep mine tunnels[J].Metal Mine,53(2):271-275.
Li Zijun, Xu Yu, Jia Mintao,et al,2021.Numerical simulation on heat hazard control by collaborative geothermal exploitation in deep mine[J].Journal of Central South University(Science and Technology),52(3):671-680.
Liu Jiangong,2011.Study and practice of low-carbon ecological mining construction of Jizhong energy group[J].Journal of China Coal Society,36(2):317-321.
Meng Li,2010.Sink Technology of Horizontal Circulation and Operational Analysis of HEMS in Sanhejian Coal Mine[D].Beijing:China University of Mining and Technology(Beijing).
Qiao Hua, Wang Jinggang, Zhang Ziping,2000.Study on the ice melting and feasibility of cooling system[J].Journal of China Coal Society,25(Supp.1):122-125.
Qin Fan,2015.Study of Tunnel Thermal Environment and Cooling Load Analysis and Calculation[D].Beijing:China University of Mining and Technology(Beijing).
Shen Weidao, Tong Jungeng,2016.Engineering Thermodynamics[M].Beijing:Higher Education Press.
Sun Xikui, Li Xuehua, Cheng Weimin,2009.Study of cold kadia-tion cooling technology using ice water from mine[J].Jou-rnal of Mining and Safety Engineering,26(1):105-109.
Wang Yunmin, Li Gang, Xu Yu,et al,2023.Research status and pro-spect of thermal environment regulation of the deep mine of China in the past 20 years[J].Metal Mine,52(3):1-13.
Yang Shengbin,2008.Heat-harm Control Technique at Great Depths with Mine Water Discharge as Cold Source in Jiahe Coal Mine[D].Beijing:China University of Geosciences(Beijing).
Yuan Liang,2007.Theoretical analysis and practical application of coal mine cooling in Huainan mining area[J].Journal of Mining and Safety Engineering,34(3):299-301.
Zhang Hui, Jian Congguang, Zhang Bo,et al,2009.Economical performance of ice refrigeration and air conditioning system in high temperature mine[J].Journal of Xi’an University of Science and Technology,29(2):149-153.
Zhang Yongliang, Liu Yaoxiang, Chen Xishan,2014.Utilization methods of geothermal resources in Jiaodong Peninsula mines[J].Metal Mine,42(5): 158-161.
边梦龙,杜翠凤,苗雨加,2018.掘进巷道风流温度场分布规律的研究[J].有色金属,70(3):107-112.
蔡美峰,多吉,陈湘生,等,2021.深部矿产和地热资源共采战略研究[J].中国工程科学,23(6):43-51.
蔡美峰,马明辉,潘继良,等,2022.矿产与地热资源共采模式研究现状及展望[J].工程科学学报,44(10):1669-1681.
蔡美峰,薛鼎龙,任奋华,2019.金属矿深部开采现状与发展战略[J].工程科学学报,41(4):417-426.
杜翠凤,徐喆,唐占信,等,2016.掘进巷道通风降温的数值模拟及影响因素分析[J].金属矿山,45(2):151-155.
郭对明,李国清,侯杰,等,2022.基于FLUENT的深井掘进巷道局部通风参数优化[J].黄金科学技术,30(5):753-763.
郭平业,朱艳艳,2011.深井降温冷负荷反分析计算方法[J].采矿与安全工程学报,28(3):483-487.
何国家,阮国强,杨壮,2011.赵楼煤矿高温热害防治研究与实践[J].煤炭学报,36(1):101-104.
何满潮,郭平业,2013.深部岩体热力学效应及温控对策[J].岩石力学与工程学报,32(12):2377-2393.
何满潮,郭平业,陈学谦,等,2015a.三河尖矿深井高温体特征及其热害控制方法[J].岩石力学与工程学报,29(增1):2593-2597.
何满潮,郭平业,2015b.徐州矿区深部开采热害治理现场试验研究[J].煤炭工程,47(4):1-4.
何满潮,徐敏,2008.HEMS深井降温系统研发及热害控制对策[J].岩石力学与工程学报,27(7):1353-1361.
纪海维,张进,范红,等,2022.矿井涌水冷热利用深井降温系统[J].西安科技大学学报,42(1):83-90.
李晓健,贾敏涛,赵旭,等,2024.高温深井矿山独头掘进巷道通风降温机理研究[J].金属矿山,53(2):271-275.
李孜军,徐宇,贾敏涛,等,2021.深部矿井岩层地热能协同开采治理热害数值模拟[J].中南大学学报(自然科学版),52(3):671-680.
刘建功,2011.冀中能源低碳生态矿山建设的研究与实践[J].煤炭学报,36(2):317-321.
孟丽,2010.三河尖矿水平循环冷源技术及其HEMS系统运行分析[D].北京:中国矿业大学(北京).
乔华,王景刚,张子平,2000.深井降温冰冷却系统融冰及技术经济分析研究[J].煤炭学报,25(增1):122-125.
秦帆,2015.高温掘进巷道热环境及降温冷负荷分析计算研究[D].北京:中国矿业大学(北京).
沈维道,童钧耕,2016.工程热力学[M].北京:高等教育出版社.
孙希奎,李学华,程为民,2009.矿井冰水冷辐射降温技术研究[J].采矿与安全工程学报,26(1):105-109.
王运敏,李刚,徐宇,等,2023.我国深部矿井热环境调控研究近20a进展及展望[J].金属矿山,52(3):1-13.
杨生彬,2008.矿井涌水为冷源的夹河矿深井热害控制技术[D].北京:中国地质大学(北京).
袁亮,2007.淮南矿区矿井降温研究与实践[J].采矿与安全工程学报,24(3):298-301.
张辉,菅从光,张博,等,2009.高温矿井冰制冷降温系统经济性[J].西安科技大学学报,29(2):149-153.
张永亮,刘耀香,陈喜山,2014.胶东半岛矿山地热资源利用方法[J].金属矿山,42(5):158-161.
[1] 邱泓杰, 邱贤阳, 张舒, 陈辉, 史秀志, 沈文博, 陶铁军, 段武全. 深井高应力环境下束状组合孔拉槽爆破优化研究[J]. 黄金科学技术, 2024, 32(2): 318-329.
[2] 李杰林, 刘一良, 王玉普, 李在利, 周科平, 程春龙. 高温独头巷道压抽混合式通风参数对人工制冷降温效果的影响[J]. 黄金科学技术, 2024, 32(1): 63-74.
[3] 张君, 杨清平, 刘芳芳, 张金钟, 徐刚强, 李晓松. 深井规模化开采矿山与分布式微震监测系统设计研究[J]. 黄金科学技术, 2023, 31(4): 659-668.
[4] 张顺,生显军,赵红浩. 玲珑金矿田108#脉支脉控矿模式研究及探矿成果[J]. 黄金科学技术, 2023, 31(3): 453-463.
[5] 郭对明,李国清,侯杰,胡乃联. 基于FLUENT的深井掘进巷道局部通风参数优化[J]. 黄金科学技术, 2022, 30(5): 753-763.
[6] 胡宝群,高海东,王运,张宝林,吕古贤,申玉科,郭涛. 玲珑金矿田含矿断裂的基岩地球化学特征及找矿潜力评价[J]. 黄金科学技术, 2022, 30(4): 518-531.
[7] 聂兴信,刘哲伟,高赵祥,程平. 高温金属矿井巷道掘进中组合压冷风筒布位对降温效果的影响[J]. 黄金科学技术, 2022, 30(1): 85-92.
[8] 王成龙,侯成录,杨尚欢,赵兴东. 千米深井高应力破碎围岩控制技术[J]. 黄金科学技术, 2020, 28(6): 885-893.
[9] 王贺,陈何,曹辉. 我国大变形锚杆研究现状及发展趋势[J]. 黄金科学技术, 2020, 28(1): 112-123.
[10] 张睿冲,谢承煜,周科平. 高温深井通风降温技术的适用条件研究[J]. 黄金科学技术, 2019, 27(6): 888-895.
[11] 王从陆,李童. 基于Ventsim的深井线性热源对有效通风量的影响分析[J]. 黄金科学技术, 2019, 27(2): 271-277.
[12] 李光,马凤山,刘港,郭捷,郭慧高,寇永渊. 金川矿区深部巷道支护效果评价及参数优化研究[J]. 黄金科学技术, 2018, 26(5): 605-614.
[13] 李夕兵,刘冰. 硬岩矿山充填开采现状评述与探索[J]. 黄金科学技术, 2018, 26(4): 492-502.
[14] 李光,马凤山,郭捷,卢蓉,陈仲杰,寇永渊. U钢管混凝土支架支护技术在金川矿山的应用[J]. 黄金科学技术, 2017, 25(5): 57-66.
[15] 刘国栋,温桂军,刘彩杰,鲍中义*,孙忠全,范家盟,李山,闫春明,郭志峰. 招平断裂北段水旺庄深部超大型金矿床的发现、特征和找矿方向[J]. 黄金科学技术, 2017, 25(3): 38-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!