img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (6): 1035-1043.doi: 10.11872/j.issn.1005-2518.2023.06.095

• 采选技术与矿山管理 • 上一篇    下一篇

四川独狼沟金矿浮选尾矿综合回收金、钨和石英砂试验研究

赵荣艳(),李天恩,张玲   

  1. 西安天宙矿业科技集团有限公司,陕西 西安 710199
  • 收稿日期:2022-07-19 修回日期:2023-06-08 出版日期:2023-12-31 发布日期:2024-01-26
  • 作者简介:赵荣艳(1983-),女,陕西西安人,高级工程师,从事有色金属矿选矿试验研究工作。61919629@qq.com

Experimental Study on the Comprehensive Recovery of Gold,Tungsten and Quartz Sand Form Flotation Tailings of Dulanggou Gold Mine in Sichuan Province

Rongyan ZHAO(),Tian’en LI,Ling ZHANG   

  1. Xi’an Tianzhou Mining Technology Development Co. ,Ltd. ,Xi’an 710199,Shaanxi,China
  • Received:2022-07-19 Revised:2023-06-08 Online:2023-12-31 Published:2024-01-26

摘要:

为了综合回收四川省独狼沟金矿浮选尾矿中的有价矿物,根据尾矿中自然金与载金矿物(黄铁矿)、白钨矿的密度差异,在不磨矿的情况下,开展了重选试验设备及流程选择、金钨分离浮选试验和重选尾矿回收石英砂的选矿试验。经过对比分析,最终采用“重选(尼尔森+摇床)—浮选(金钨分离)—磁选”联合工艺流程,获得了金品位为107.00×10-6、金回收率为2.34%的金精矿,WO3品位为52.95%、WO3回收率为47.23%的钨精矿,以及SiO2品位为96.32%、SiO2回收率为72.68%的石英精矿,且石英精矿达到了铸造型石英砂2S等级。该尾矿选矿工艺流程具有成本低、易于现场操作以及对环境友好等优点。

关键词: 尾矿综合回收, 重选, 金钨分离, 石英砂, 白钨矿, 尼尔森选矿机

Abstract:

The flotation tailings came from Dulanggou gold mine in Sichuan Province,with the particle size of -0.074 mm 27%.The results of chemical analysis show that the grade of Au,WO3 and SiO2 is 0.42×10-6, 0.039%,and 94.01% respectively.The main valuable metal minerals are natural gold,scheelite and pyrite,and the gangue minerals are mainly quartz,mica and feldspar,which belong to the tailings that can be recycled. In order to comprehensively recover the valuable minerals in the flotation tailings of Dulanggou gold mine,according to the density difference between natural gold and gold-bearing minerals(pyrite) and scheelite in the tailings,without grinding,the gravity separation test equipment and process selection,gold-tungsten separation flotation test and beneficiation test of quartz sand recovery from gravity tailings were carried out.Finally,through detailed comparative analysis,the combined process of gravity separation (Nielsen+shaking table)-flotation (gold tungsten separation)-magnetic separation was adopted.The flotation process has got a better classification index.The gold concentrate Au grade is 107.00×10-6 and Au recovery is 2.34%.Tungsten concentrate(WO3 grade) is 52.95% and WO3 recovery is 47.23%.Quartz sand concentrate(SiO2 grade) is 96.32% and SiO2 recovery is 75.68%,and the quartz sand concentrate reaches 2S level.The tailings bene-ficiation process has the advantages of low cost,easy on-site operation and environmental protection.

Key words: tailing comprehensive recovery, gravity separation, gold tungsten separation, quartz sand, scheelite, Nielsen

中图分类号: 

  • TD953

图1

重选精矿砂薄片(a)白钨矿无色透明,具极高正突起,白钨矿粒度为0.29 mm×0.22 mm和0.130 mm×0.068 mm(150×);(b)白钨矿具一级顶部干涉色,边缘连生的少量石英明晰可辨(100×);(c)白钨矿粒度为0.13 mm和0.11 mm,白钨矿颗粒全解离(100×);Sch-白钨矿;Q-石英;Py-黄铁矿"

表1

白钨矿粒度测定结果"

粒级/mm粒数/粒粒数比/%累计/%
合计180100.0-
0.280~0.15452.8100.0
0.154~0.1002111.797.2
0.100~0.0743016.785.5
0.074~0.0455430.068.8
0.045~0.0302715.038.8
0.030~0.015158.323.8
0.015~0.0052614.415.5
≤0.00521.11.1

表2

金钨重选试验结果"

试验名称产品名称产率/%品位回收率/%
Au/(×10-6WO3/%AuWO3
单一摇床重选试验精矿0.1410.2611.863.6142.36
分级—摇床重选试验-0.1 mm精10.0614.2517.972.0029.96
+0.1 mm精20.661.990.363.036.62
合计0.723.031.855.0336.58
分级—再磨摇床重选试验-0.1 mm精10.0614.4019.782.4632.22
+0.1 mm精20.474.950.116.191.31
合计0.536.082.478.6533.53
螺旋溜槽—摇床重选试验精矿0.0719.7319.013.6635.28
卧式离心机—摇床重选试验精矿0.1211.996.833.6919.95
悬振锥面选矿机—摇床重选试验精矿0.303.072.312.3217.33
尼尔森—摇床重选试验精矿0.0527.5140.993.1246.45

表3

尼尔森重力G值条件试验结果"

重力

G

产品名称产率/%品位回收率/%
Au/(×10-6WO3/%AuWO3
60精矿0.742.972.6575.3749.10
尾矿99.260.390.02194.6350.90
现场尾矿100.000.410.040100.00100.00
90精矿0.743.922.6357.1749.03
尾矿99.260.380.02192.8350.97
现场尾矿100.000.410.040100.00100.00
120精矿0.763.782.6037.2350.51
尾矿99.240.370.01992.7749.49
现场尾矿100.000.400.039100.00100.00

图2

金钨分离条件试验流程"

表4

金钨分离磨矿细度试验结果"

-0.074 mm占比/%产品名称作业产率/%品位作业回收率/%对矿回收率/%
Au/(×10-6WO3/%AuWO3AuWO3
51(不磨矿)金精矿10.11115.1130.65140.456.991.263.25
钨精矿89.8919.0645.85259.5593.011.8643.20
重选精矿100.0028.7744.315100.00100.003.1246.45
65金精矿14.38112.009.94056.513.221.761.50
钨精矿85.6214.4850.12243.4996.781.3644.96
重选精矿100.0028.5044.345100.00100.003.1246.45
75金精矿19.73105.0012.49071.375.482.232.55
钨精矿80.2710.3552.91328.6394.520.8943.91
重选精矿100.0029.0344.938100.00100.003.1246.45
85金精矿24.9890.1114.91078.768.552.463.97
钨精矿75.028.0953.13021.2491.450.6642.48
重选精矿100.0028.5843.583100.00100.003.1246.45

表5

H2SO4用量试验结果"

H2SO4 用量/(g·t-1pH值产品名称作业产率/%品位作业回收率/%对矿回收率/%
Au/(×10-6WO3/%AuWO3AuWO3
0.255~6金精矿21.05101.2517.5573.918.482.313.94
钨精矿78.959.5350.5226.0991.520.8142.51
重选精矿100.0028.8443.58100.00100.003.1246.45
0.355~6金精矿19.73105.0012.4971.375.482.232.55
钨精矿80.2710.3552.9128.6394.520.8943.91
重选精矿100.0029.0344.94100.00100.003.1246.45
0.454~5金精矿16.33118.6011.3366.654.172.081.94
钨精矿83.6711.5850.8833.3595.831.0444.51
重选精矿100.0029.0644.42100.00100.003.1246.45

表6

捕收剂用量试验结果"

丁基黄药+丁铵黑药用量/(g·t-1产品名称作业产率/%品位作业回收率/%对矿回收率/%
Au/(×10-6WO3/%AuWO3AuWO3
0.50+0.50金精矿15.66118.6410.2563.803.591.991.67
钨精矿84.3412.5051.1536.2096.411.1344.98
重选精矿100.0029.1244.75100.00100.003.1246.45
0.65+0.65金精矿19.26108.4511.2571.294.862.222.27
钨精矿80.7410.4252.5728.7195.140.9044.18
重选精矿100.0029.3044.61100.00100.003.1246.45
0.75+0.75金精矿20.00105.6012.1172.135.492.252.55
钨精矿80.0010.2052.0927.8794.510.8743.90
重选精矿100.0029.2844.09100.00100.003.1246.45

图3

综合尾矿摇床重选—中强磁磁选试验流程"

表7

综合尾矿摇床重选—中强磁磁选试验结果"

产品名称产率/%SiO2品位/%SiO2回收率/%
精矿0.2766.170.19
重矿物3.4686.793.19
磁性物2.2255.551.31
石英精矿70.9696.3272.68
尾矿23.0992.1322.63
现场尾矿100.0094.03100.00

表8

重选工艺流程参数"

工艺流程参数名称数值
摇床作业坡度/度2.1
冲次/(次·min-1300
冲程/mm12
冲洗水/(L·min-19.60
尼尔森作业浓度/%35
G90
水量/(L·min-13.0

表9

最终选矿联合工艺试验分析结果"

产品名称

产率

/%

品位回收率/%
Au/(×10-6WO3/%SiO2/%AuWO3SiO2
金精矿0.009107.0012.51024.662.342.870.00
钨精矿0.03510.3352.95021.030.8847.230.01
摇床中矿0.2261.490.34375.000.821.980.18
重矿物3.4601.290.10086.7910.868.823.19
磁性物2.2200.680.04355.553.672.431.31
石英精矿70.9600.390.01896.3267.3732.5572.68
尾矿23.0900.250.00792.1314.064.1222.63
现场尾矿100.000.410.03994.03100.00100.00100.00

图4

最终选矿联合工艺试验流程"

Antonelli P M, Fraser L H, Gardner W C,et al,2018.Long term carbon sequestration potential of biosolids-amended copper and molybdenum mine tailings following mine site reclamation[J].Ecological Engineering,117:38-49.
Chen Dujuan, Wang Zhifeng, Wang Tingxia,2021.Experimental study on comprehensive recovery and beneficiation of tailings[J].Multipurpose Utilization of Mineral Resources,(1):104-108.
Dai Xinyu, Wang Changliang, Dong Xiaoji,et al,2011.Gold recovery from gold-copper ore by Knelson concentrator[J].Nonferrous Metals(Mineral Processing Section),(Supp.1):143-145.
Dong L Y, Wei Q, Qin W Q,et al,2021.Effect of iron ions as assistant depressant of citric acid on the flotation separation of scheelite from calcite[J].Chemical Engineering Science,241:116720.
Givemore S, Bern K, Altun E M,2015.A hybrid evolutionary performance improvement procedure for optimization of continuous variable discharge concentrators[J].Separation and Purification Technology,145:130-138.
Han H, Hu Y, Sun W,et al,2018.Novel catalysis mechanisms of benzohydroxamic acid adsorption by lead ions and changes in the surface of scheelite particles[J].Minerals Engineering,119:11-22.
Han Yuexin, Sun Yongsheng, Li Yanjun,et al,2015.New development on mineral processing technology of iron ore resources in China[J].Metal Mine,44(2):1-11.
He Guichun, Xiao Cehuan,2015.Experimental study on flotation of wolframite tailings in a Jiangxi tungsten mine[J].Nonferrous Metals Science and Engineering,6(6):82-87.
Huang Lijuan, Jiang Yaxiong, Zhu Kun,et al,2018.Experimental study on comprehensive recovery of flotation tailings from a gold mine in Yunnan Province[J].Gold,39(1):77-80.
Li H, Liu M X, Liu Q,2018.The effect of non-polar oil on fine hematite flocculation and flotation using sodium oleate or hydroxamic acids as a collector[J].Minerals Engineering,119:105-115.
Li Yang, Meng Fantao, Wang Peng,2019.Research progress of comprehensive utilization of gold tailings[J].Journal of Shandong University of Technology(Natural Science Edition),33(1):40-44.
Shao Hui,2015.Flotation experiments of a low grade scheelite[J].Metal Mine,44(1):58-61.
Sun Chuanyao,2015.Handbook for Mineral Processing Engineers[M].Beijing:Metallurgical Industry Press.
Wang Qinghua, Zhang Shuguang, Li Jiangshan,2015.Experimental research on silica sand purification by permanent strong magnetic separation and acid leaching[J].Non-Metallic Mines,38(3):52-54.
Xiao Wengong,2017.Beneficiation recovery of low grade scheelite from sulfur tailings[J].China Tungsten Industry,32(1):47-50.
Xu Han, Xu Biao, Chen Xuannian,2017.Experimental study on recovery of quartz form Nanfen iron tailings[J].Mining En-gineering,15(5):21-24.
Yang Jianwen, Xiao Jun, Chen Daixiong,2018.Experimental study on separation of valuable metals for Nielsen Centri-fugal gravity separation concentrate[J].Nonferrous Metals(Mineral Processing Section),(5):58-63.
Yi Yunlai, Liu Zhongrong, Wei Qian,2014.Study on improving flotation indexes of fine slimes of primary tungsten[J].No-nferrous Metals(Mineral Processing Section),(1):46-47.
Zhang Guoquan, Dai Huixin,2008.On gravity dressing experiment of a scheelite mine[J].China Tungsten Industry,23(5):23-25.
Zhang Ruiyang, Mao Yuyu, Li Zhengyao,et al,2021.Study of the occurrence law of iron in different types of sorting tailings of Anshan-type low-grade hematite[J].Chinese Journal of Engineering,43(10):1304-1311.
Zhang Hong, Lan Zhuoyue,2018.Experimental research on flotation of a low-grade scheelite ore in Anhui Province[J].Multipurpose Utilization of Mineral Resources,(2):20-24.
Zhao Minjie, Fang Jianjun, Li Guodong,et al,2016.The application and research progress of Knelson concentrators in mineral beneficiation[J].Conservation and Utilization of Mineral Resources,(4):73-78.
Zhao Nan, Xianjun Lü, Liang Zhiqiang,2015.Progress of comprehensive recovery techniques of gold tailings[J].Gold,36(3):71-75.
陈杜娟,王志丰,王婷霞,2021.某尾矿综合回收选矿实验研究[J].矿产综合利用,(1):104-108.
戴新宇,王昌良,董小骥,等,2011.尼尔森选矿机回收金铜矿中的金[J].有色金属(选矿部分),(增1):143-145.
韩跃新,孙永升,李艳军,等,2015.我国铁矿选矿技术最新进展[J].金属矿山,44(2):1-11.
何桂春,肖策环,2015.江西某钨尾矿浮选试验[J].有色金属科学与工程,6(6):82-87.
黄丽娟,姜亚雄,朱坤,等,2018.云南某金矿浮选尾矿综合回收试验研究[J].黄金,39(1):77-80.
李杨,孟凡涛,王鹏,2019.黄金尾矿综合利用的研究进展[J].山东理工大学学报(自然科学版),33(1):40-44.
邵辉,2015.某低品位白钨矿石浮选试验[J].金属矿山,44(1):58-61.
孙传尧,2015.选矿工程师手册[M].北京:冶金工业出版社.
王庆华,张树光,李江山,2015.石英砂永磁强磁选—酸浸提纯试验研究[J].非金属矿,38(3):52-54.
肖文工,2017.从硫尾矿中回收低品位白钨矿粗选试验研究 [J].中国钨业,32(1):47-50.
许晗,徐彪,陈煊年,2017.南芬铁尾矿回收石英试验研究[J].矿业工程,15(5):21-24.
杨建文,肖骏,陈代雄,2018.尼尔森离心重砂有价金属分离试验研究[J]有色金属(选矿部分),(5):58-63.
易运来,刘忠荣,魏茜,2014.提高某原生钨细泥选矿指标的研究[J].有色金属(选矿部分),(1):46-47.
张虹,蓝卓越,2018.安徽某低品位白钨矿浮选试验研究[J].矿产综合利用,(2):20-24.
章国权,戴惠新,2008.云南某白钨矿重选试验研究[J].中国钨业,23(5):23-25.
张瑞洋,毛宇宇,李正要,等,2021.鞍山式贫赤铁矿不同种类分选尾矿中铁的赋存规律[J].工程科学学报,43(10):1304-1311.
赵敏捷,方建军,李国栋,等,2016.尼尔森选矿机在国内外选矿中的应用与研究进展[J].矿产保护与利用,(4):73-78.
赵楠,吕宪俊,梁志强,2015.黄金矿山尾矿综合回收技术进展[J].黄金,36(3):71-75.
[1] 余应龙,周岳强,董玉宁,时承华. 湖南安化大溶溪白钨矿床侧伏规律研究及意义[J]. 黄金科学技术, 2023, 31(2): 252-261.
[2] 张婷,李平,冯博,李振飞. 离心重选—浮选脱硫工艺回收细粒级钨锡矿物的试验研究[J]. 黄金科学技术, 2022, 30(1): 113-121.
[3] 高云峰,杨兴科,阮仕琦,韩珂,张伟胜,朱伟. 南秦岭镇安西部钨矿集区控矿构造特征及找矿标志[J]. 黄金科学技术, 2019, 27(4): 489-496.
[4] 杨玮, 董萍, 邓忠. 某重选尾矿金浮选试验研究[J]. 黄金科学技术, 2018, 26(2): 203-211.
[5] 陈桥,杨洪英,陈贵民,佟琳琳,牛会群. 尼尔森重选在我国石英脉型金矿选矿工艺中的应用[J]. 黄金科学技术, 2017, 25(5): 73-79.
[6] 肖骏,董艳红. 尼尔森离心机处理某石英脉型金矿的试验研究[J]. 黄金科学技术, 2015, 23(6): 92-96.
[7] 陈水波,谢洪珍,赖伟强,郭金溢,阴菡. 新疆某金矿重选—氰化联合工艺应用研究[J]. 黄金科学技术, 2014, 22(6): 87-90.
[8] 王苹,陈贵民. 抱伦金矿重选工艺优化及摇床远程操作实践[J]. 黄金科学技术, 2014, 22(1): 60-63.
[9] 赖伟强,林鸿汉,张波,游蔓莉. 蒙古苏木那林桃勒盖氧化金矿石选冶试验研究[J]. 黄金科学技术, 2013, 21(5): 154-156.
[10] 王吉青,孟凡丽,王苹,杨新华,南奎松. 重选在黄金选矿生产中的研究与应用[J]. J4, 2008, 16(6): 44-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈美玲, 徐水太, 顾东明. 多要素驱动资源型城市转型的路径研究——基于TOE框架的fsQCA分析[J]. 黄金科学技术, 2023, 31(6): 1004 -1013 .
[2] 宋高瑞, 翟新伟, 王二腾, 武磊, 陈万峰, 郑菲菲, 王海东, 王金荣. 甘肃花牛山金矿床成矿流体性质及矿床成因[J]. 黄金科学技术, 2023, 31(6): 873 -887 .
[3] 许云美, 袁利伟, 龙皓楠. 干堆尾矿库稳定性影响因素的敏感性分析[J]. 黄金科学技术, 2023, 31(6): 1014 -1022 .
[4] 顾清华, 杜艺凡, 李萍丰, 王丹. 基于加权双向特征融合的矿区道路落石检测[J]. 黄金科学技术, 2023, 31(6): 953 -963 .
[5] 赵子瑜, 毕林. 矿边智能:智能矿山边缘侧建设新趋势[J]. 黄金科学技术, 2023, 31(6): 964 -977 .
[6] 孟文文, 李鹏. 黄金行业尾矿处置政策与综合利用实践[J]. 黄金科学技术, 2023, 31(6): 1023 -1034 .
[7] 海龙, 冯丽鑫, 谭世林, 吕勇博. 根土复合体加固露天矿山排土场边坡研究[J]. 黄金科学技术, 2023, 31(6): 911 -918 .
[8] 吴荔, 匡文龙, 张志辉, 陈健龙, 张跃权, 刘兆阳, 黄英剑. 赣东北银山矿田铜矿石中伴生金赋存状态研究[J]. 黄金科学技术, 2023, 31(6): 888 -899 .
[9] 费鸿禄, 纪海楠, 山杰. 露天台阶水介质间隔装药结构优选及对比试验研究[J]. 黄金科学技术, 2023, 31(6): 930 -943 .
[10] 甘会莲, 蒋新闻, 陈志伟, 乔永昕, 陈淑华, 王建国. 一体化聚能水压爆破技术在软弱围岩隧道的应用[J]. 黄金科学技术, 2023, 31(6): 944 -952 .