img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (5): 736-751.doi: 10.11872/j.issn.1005-2518.2023.05.062

• 矿产勘查与资源评价 • 上一篇    下一篇

赣南印支期白石钨(铜)矿床成矿岩体地球化学特征及地质意义

李利1,2(),王国光2,李海立3,4(),肖惠良3,陈乐柱3   

  1. 1.江苏城乡建设职业学院,江苏 常州 213147
    2.南京大学内生金属矿床成矿机制研究国家重点实验室,江苏 南京 210023
    3.中国地质调查局南京地质调查中心,江苏 南京 210016
    4.中国科学技术大学,安徽 合肥 230026
  • 收稿日期:2023-04-23 修回日期:2023-07-03 出版日期:2023-10-31 发布日期:2023-11-21
  • 通讯作者: 李海立 E-mail:1084621165@qq.com;njlihaili@163.com
  • 作者简介:李利(1990-),女,山东济宁人,讲师,博士,从事矿床学研究工作。1084621165@qq.com
  • 基金资助:
    江苏城乡建设职业学院校级科研项目“矿物自动识别技术在地质领域的应用研究——以TIMA为例”(XJZK21013);南京大学内生金属矿床成矿机制研究重点实验室开放基金项目“江西德兴超大型斑岩型铜(钼金)矿田成矿流体和成矿机制研究”(2022-LAMD-K09);江苏省高等学校基础科学(自然科学)研究面上项目“江苏东海毛北金红石矿流体成矿过程和成矿机制研究”(22KJD170001);江苏省发改委项目“江苏省低碳建材与城乡生态工程研究中心”(苏发改高技发[2021]1368号);中国地质调查局地质调查项目“江西遂川—石城地区锂铍铌钽等矿产地质调查”(DD20230277)

Geochemical Characteristics and Geological Significance of the Ore-forming Granite of Indosinian Baishi W-Cu Deposit in Southern Jiangxi Province

Li LI1,2(),Guoguang WANG2,Haili LI3,4(),Huiliang XIAO3,Lezhu CHEN3   

  1. 1.Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, Jiangsu, China
    2.State Key Laboratory for Mineral Deposits Research, Nanjing University, Nanjing 210023, Jiangsu, China
    3.Nanjing Geological Survey Center, China Geological Survey, Nanjing 210016, Jiangsu, China
    4.University of Science and Technology of China, Hefei 230026, Anhui, China
  • Received:2023-04-23 Revised:2023-07-03 Online:2023-10-31 Published:2023-11-21
  • Contact: Haili LI E-mail:1084621165@qq.com;njlihaili@163.com

摘要:

白石钨(铜)矿床是赣南印支期的一个中型石英脉型矿床,其成矿岩体的研究薄弱。为探究成矿岩体的岩浆成因及其与成矿之间的关系,以白石花岗岩为对象,开展了地球化学研究。白石花岗岩具有富硅、总碱含量高、铝饱和指数高及分异指数较高的特征,在稀土元素配分曲线上显示右倾的特征,Eu异常明显,微量元素蛛网图上显示富集大离子亲石元素(如Rb、Th和U),亏损高场强元素(如Nb和Ti)。上述岩石地球化学特征及相关地球化学图解均表明白石花岗岩为分异的S型花岗岩。研究结果揭示,白石花岗岩为板内环境形成的花岗岩,源岩为泥质岩,形成过程以分离结晶作用为主,形成于印支造山运动后的伸展环境,与华南印支期的成矿作用密切相关。

关键词: 白石花岗岩, 岩石地球化学, S型花岗岩, 印支期, 成矿作用, 赣南

Abstract:

The Baishi W-Cu deposit is a medium-sized quartz vein type deposit formed in Indosinian in southern Jiangxi Province.It belongs to the Nanling metallogenic belt.Although it had been exploited since the founding of the People’s Republic of China,few studies have been done on ore-forming mass.The Baishi granite is the main magmatic rock exposed in the mining area and it is recognized as the ore-forming rock.The Baishi granite has undergone carbonation,chlorite,and muscovite alteration.The Baishi granite has obvious tungsten and copper mineralization.In order to probe into the magma genesis and its relationship with metallogenesis,this study conducted detailed geochemical analysis for the Baishi granite.From the feature of the major elements,the Baishi granite has relatively high SiO2 contents (71.59%~75.36%),total alkali content(Na2O+K2O:6.28%~7.45%),aluminum saturation index(A/CNK:1.71~2.11) and differentiation index(DI:81.53~90.39).It can be inferred that the Baishi granite is peraluminous granite and it has a high degree of differentiation.In the characteristics of rare earth elements,the Baishi granite exhibits obvious enrichment of light rare earth elements,relative depletion of heavy rare earth elements(LREE/HREE=9.94~12.29) and obvious Eu negative anomaly(δEu=0.28~0.57).Additionally,in the diagram of trace element spider pattern,the Baishi granite is relatively enriched in large ion lithophile elements,such as Rb,Th and U,and depleted in high field strength elements,such as Nb and Ti.While Ba is depleted relative to Rb.The geochemical characteristics mentioned above and relevant geochemical diagrams of the Baishi granite display obvious characteristics of differential S-type granites.Based on the comprehensive analysis,it can be concluded that the Baishi granite is formed in the intraplate environment.The Baishi granite’s magma source is crust and it is mainly derived from the pelite.In addition,the fractional crystallization plays more important role in its forming process than partial melting.In terms of the tectonic setting,the Baishi granite was formed in the extensional environment after the Indosinian orogeny.More and more studies have shown that the Indosinian mineralization played an important role in W and Sn mineralization in South China,and the Baishi granite is closely related to the Indosinian mineralization in South China.

Key words: Baishi granite, geochemistry, S-type granite, Indosinian, metallogenesis, southern Jiangxi Province

中图分类号: 

  • P518.2

图1

白石钨(铜)矿区域地质简图(a)华南燕山期花岗岩分布图(据Li et al.,2009);(b)赣南钨矿集区和典型钨—锡矿床分布图(据丰成友等,2015);(c)白石钨(铜)矿区域地质图(据刘欢等,2021)"

图2

白石钨(铜)矿地质图(修改自江西省地质局,1974)1.白石岩体;2.花岗斑岩脉;3.石英斑岩脉;4.石英脉;5.震旦系;6.寒武系;7.钨铜矿体;8.断层;9.采样位置及编号"

图3

白石花岗岩岩相学特征(a)含黑钨矿石英脉的白石花岗岩的野外照片;(b)白石花岗岩的手标本照片,其中含有矿化;(c),(d)白石花岗岩的显微镜下正交偏光照片;(e),(f)白石花岗岩的显微镜下反射光照片;Wol-黑钨矿;Ccp-黄铜矿;Q-石英;Kfs-钾长石;Pl-斜长石;Bt-黑云母;Ms-白云母"

表1

白石花岗岩全岩主量(%)、微量和稀土元素(×10-6)成分"

样品编号SiO2Al2O3K2ONa2OTFe2O3FeOMgOTiO2CaOP2O5MnOLOI总计
G001-YQ1-173.9513.494.372.941.891.540.420.250.540.220.061.3399.46
G001-YQ1-273.6713.814.333.002.081.800.460.280.580.230.061.3199.81
G003-YQ1-170.1714.934.022.143.772.410.890.581.140.290.092.20100.22
G003-YQ1-270.1214.564.182.093.872.370.910.601.070.270.092.25100.02
G003-H171.3013.786.330.174.550.720.630.500.040.140.022.5299.98
样品编号A/CNKA/NKLaCePrNdSmEuGdTbDyHoEr
G001-YQ1-11.721.8535.2972.088.5230.665.990.544.820.743.980.742.22
G001-YQ1-21.751.8837.6677.259.1032.706.430.555.160.794.250.802.38
G003-YQ1-12.042.4273.16153.8416.6159.1510.791.408.861.266.521.223.59
G003-YQ1-21.982.3269.87145.3515.8556.5410.411.368.581.216.411.223.58
G003-H12.112.1268.55125.6415.2753.688.891.456.270.753.430.621.87
样品编号TmYbLuRbBaThUNbTaHfZrTiY
G001-YQ1-10.332.230.33395.51217.6718.9310.1121.804.224.12134.511 539.7522.82
G001-YQ1-20.352.340.35392.86204.1419.748.9823.744.774.59153.491 704.6124.24
G003-YQ1-10.503.190.49314.28632.8434.778.7818.741.906.08225.953 600.6335.88
G003-YQ1-20.503.280.49321.12638.9133.508.4319.061.926.41239.313 689.3335.80
G003-H10.261.770.28654.761 049.4625.257.2116.071.625.49204.373 071.1218.34
样品编号VCrCoNiLiSrBeScMnGaPbBiDI
G001-YQ1-116.725.062.461.88109.5044.1824,614.90438.3123.5926.403.7390.39
G001-YQ1-218.025.392.852.00110.9343.1523.394.75456.6623.5528.525.3290.05
G003-YQ1-149.3812.609.635.82124.63150.9811.178.33692.3425.0143.441.5582.04
G003-YQ1-251.1411.709.375.30128.11148.5610.408.35677.3424.3542.551.2381.53
G003-H140.2510.401.010.74274.32156.5812.457.69209.2323.50905.263.5483.55

图4

岩浆岩系统全碱—硅(TAS)分类图解(底图据Middlemost,1994)注:Ir为Irvine 分界线,其上方为碱性,下方为亚碱性;瑶岗仙花岗岩数据来源于Li et al.(2020);西华山花岗岩数据来源于Guo et al.(2012);大吉山花岗岩数据来源于吴鸣谦(2017)"

图5

白石花岗岩的A/CNK-A/NK图解(底图据Shand,1943)注:瑶岗仙花岗岩数据来源于Li et al.(2020);西华山花岗岩数据来源于Guo et al.(2012);大吉山花岗岩数据来源于吴鸣谦(2017)"

图6

白石花岗岩稀土元素球粒陨石标准化蛛网图(a)和微量元素原始地幔标准化蛛网图(b)(底图据Boynton,1984;Sun et al.,1989)"

图7

白石花岗岩w(Zr+Nb+Ce+Y)-FeOT/MgO图解(a)(底图据Whalen et al.,1987)和w(SiO2)-FeOT/MgO图解(b)(底图据Eby,1990)"

图8

白石钨(铜)矿白石花岗岩w(SiO2)-w(P2O5)(a)、ACF(b)(底图据Nakada et al.,1979)、w(K2O)-w(Na2O)(c)和w(TFeO)-w(CaO)(d)图解(底图据Chappell et al.,2001)"

图9

白石花岗岩的δEu-(La/Yb)N图解(a)(底图据Sylvester,1998)和CaO/(MgO+FeOT)-Al2O3/(MgO+FeOT)图解(b)(底图据Gerdes et al.,2000)"

图10

白石花岗岩的Rb-(Y+Nb)图解(底图据Pearceet al.,1984)(base map according to Pearce et al.,1984)"

图11

白石花岗岩和白石钨—铜矿形成的地球动力学背景(白石花岗岩和白石钨—铜矿形成年代据Li et al.,2022)according to Li et al.,2022)"

Boynton W V,1984.Cosmochemistry of the Rare Earth Elements:Meteorite Studies[M]//Rare Earth Element Geochemistry.Amsterdam:Elsevier.
Broska I, Williams C T, Uher P,et al,2004.The geochemistry of phosphorus in different granite suites of the Western Carpathians,Slovakia:The role of apatite and P-bearing feldspar[J].Chemical Geology,205(1/2):1-15.
Brown M, Pressley R A,1999.Crustal melting in nature:Procecuting source processes[J].Physics and Chemistry of the Earth,Part A:Solid Earth and Geodesy,24(3):305-316.
Chappell B W,1999.Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites[J].Lithos,46:535-551.
Chappell B W, White A J R,2001.Two contrasting granite types:25 years later[J].Australian Journal of Earth Sciences,48(4):489-499.
Charvet J,2013.The Neoproterozoic-Early Paleozoic tectonic evolution of the South China Block:An overview[J].Journal of Asian Earth Sciences,74:198-209.
Chen Binfeng, Zou Xinyong, Peng Linlin,et al,2019.Geological characteristics and heavy rare earth ore prospecting potential of Qingxi pluton rare earth deposit[J].Chinese Rare Earths,40(4):20-31.
Chen Jun, Lu Jianjun, Chen Weifeng,et al,2008.W-Sn-Nb-Ta-bearing granites in the Nanling range and their relationship to metallogenesis[J].Geological of China Universities,14(4):459-473.
Chen Jun, Wang Rucheng, Zhu Jinchu,et al,2013.Multiple-aged granitoids and related tungsten-tin mineralization in the Nanling range,South China[J].Science China(Earth Sciences),44(1):111-121.
Chen L L, Ni P, Dai B Z,et al,2019.The genetic association between quartz vein- and greisen-type mineralization at the Maoping W-Sn deposit,southern Jiangxi,China:Insights from zircon and cassiterite U-Pb ages and cassiterite trace element composition[J].Minerals,9(7):411.
Chen Peirong, Kong Xinggong, Wang Yinxi,et al,1999.Rb-Sr isotopic dating and significance of Early Yanshanian Bimodal vocanic-intrusive complex from south Jiangxi Province[J].Geological Journal of China Universities,5(4):378-383.
Chen Yuchuan, Pei Rongfu, Zhang Hongliang,et al,1989.The Geology of Nonferrous and Rare Metal Deposits Related to Mesozoic Granitoids in the Nanling Region,China[M].Beijing:Geological Publishing House.
Eby G N,1990.The A-type granitoids:A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J].Lithos,26:115-134.
Fan Weiming, Wang Yuejun, Guo Feng,et al,2003.Mesozoic mafic magmatism in Hunan-Jiangxi Provinces and the lithospheric extension[J].Earth Science Frontiers,10(3):159-169.
Feng C Y, Zeng Z L, Zhang D Q,et al,2011.SHRIMP zircon U-Pb and molybdenite Re-Os isotopic dating of the tungsten deposits in the Tianmenshan-Hongtaoling W-Sn orefield,southern Jiangxi Province,China,and geological implications[J].Ore Geology Reviews,43(1):8-25.
Feng Chengyou, Feng Yaodong, Xu Jianxiang,et al,2007.Isotope chronological evidence for Upper Jurassic petrogenesis and mineralization of altered granite-type tungsten deposits in the Zhangtiantang area,southern Jiangxi[J].Geology in China,34(4):642-650.
Feng Chengyou, Zeng Zailin, Qu Wenjun,et al,2015.A geochronological study of granite and related mineralization of the Zhangjiadi molybdenite-tungsten deposit in Xingguo County,southern Jiangxi Province,China,and its geological significance[J].Acta Petrologica Sinica,31(3):709-724.
Gerdes A, WÖRner G, Henk A,2000.Post‐collisional granite generation and HT-LP metamorphism by radiogenic heating:The Variscan South Bohemian Batholith[J].Journal of the Geological Society,157(3):577-587.
Guo C L, Chen F C, Zeng Z L,et al,2012.Petrogenesis of the Xihuashan granites in southeastern China:Constraints from geochemistry and in-situ analyses of zircon U-Pb-Hf-O isotopes[J].Lithos,148:209-227.
Guo Chunli, Zheng Jiahao, Lou Fasheng,et al,2012.Petrography,genetic types and geological dynamical settings of the Indosinian granitoids in South China[J].Geotectonica et Metallogenia,36(3):457-472.
Harris N B W, Inger S,1992.Trace element modelling of pelite-derived granites[J].Contributions to Mineralogy and Petrology,110:46-56.
Holloway N H,1982.North Palawan block,Philippines—Its relation to Asian mainland and role in evolution of South China Sea[J].The American Association of Petroleum Geologists Bulletin,66:1355-1383.
Hsü K J, Li J L, Chen H H,et al,1990.Tectonics of South China:Key to understanding West Pacific geology[J].Tectonophy-sics,183:9-39.
Hu R Z, Wei W F, Bi X W,et al,2012.Molybdenite Re-Os and muscovite 40Ar/39Ar dating of the Xihuashan tungsten deposit,central Nanling district,South China[J].Lithos,150:111-118.
Hua Renmin, Chen Peirong, Zhang Wenlan,et al,2005.Three major metallogenic events in Mesozoic in South China[J].Mineral Deposits,24(2):99-107.
Jiangxi Bureau of Geology,1974.Regional geological survey report-Xingguo(1∶200 000)[R].Nanchang:Jiangxi Bureau of Geology.
Jung S, Pfänder J A,2007.Source composition and melting temperatures of orogenic granitoids:Constraints from CaO/Na2O,Al2O3/TiO2 and accessory mineral saturation thermometry[J].European Journal of Mineralogy,19(6):859-870.
Lee C T A, Morton D M,2015.High silica granites:Terminal porosity and crystal settling in shallow magma chambers[J].Earth and Planetary Science Letters,409:23-31.
Li Guanglai, Hua Renmin, Wei Xinglin,et al,2011.Rb-Sr isochron age of single-grain muscovite in the Xushan W-Cu deposit central Jiangxi,and its geological significance[J].Earth Science(Journal of China University of Geosciences),36(2):282-288.
Li L, Li H L, Wang G G,et al,2022.Geochronology of the Baishi W-Cu deposit in Jiangxi Province and its geological significance[J].Minerals,12(11):1387.
Li W S, Ni P, Pan J Y,et al,2021.Constraints on the timing and genetic link of scheelite- and wolframite-bearing quartz veins in the Chuankou W ore field,South China[J].Ore Geology Reviews,133(126):104122.
Li W S, Ni P, Wang G G,et al,2020.A possible linkage between highly fractionated granitoids and associated W-mineralization in the Mesozoic Yaogangxian granitic intrusion,Nanling region,South China[J].Journal of Asian Earth Sciences,193:104314.
Li X H, Li W X, Li Z X,2007.On the genetic classification and tectonic implications of the Early Yanshanian granitoids in the Nanling Range,South China[J].Chinese Science Bulletin,52(14):1873-1885.
Li X H, Li W X, Wang X C,et al,2009.Role of mantle-derived magma in genesis of early Yanshanian granites in the Nanling Range,South China:In situ zircon Hf-O isotopic constraints[J].Science in China(Series D:Earth Sciences),52(9):1262-1278.
Li X H, Li Z X, Li W X,et al,2006.Initiation of the Indosinian Orogeny in South China:Evidence for a Permian Magmatic Arc on Hainan Island[J].The Journal of Geology,114(3):341-353.
Li Xianhua, Li Wuxian, Li Zhengxiang,2007.Re-discussion on the genetic classification and tectonic implications of the Yanshanian granitoids in the Nanling Range,South China[J].Chinese Science Bulletin,52(9):981-991.
Liang Huaying, Wu Jing, Sun Weidong,et al,2011.Discussion on Indosinian mineralization in South China[J].Acta Mineralogica Sinica,31(Supp.1):53-54.
Linnen R L, Keppler H,2002.Melt composition control of Zr/Hf fractionation in magmatic processes[J].Geochimica et Cosmochimica Acta,66(18):3293-3301.
Liu F L, Xu Z Q, Liou J G,et al,2004.SHRIMP U-Pb ages of ultrahigh-pressure and retrograde metamorphism of gneisses,south-western Sulu terrane,eastern China[J].Journal of Metamorphic Geology,22(4):315-326.
Liu Fulai, Xu Zhiqin, Yang Jingsui,et al,2004.Geochemical characteristics and UHP metamorphism of granitic gneisses in the main drilling hole of Chinese Continental Scientific Drilling Project and its adjacent area[J].Acta Petrologica Sinica,20(1):9-26.
Liu Huan, Zhao Xilin, Jiang Jian,et al,2021.The formation mechanism of the Xingguo vortex structure and its geological implication for the Mesozoic sinistral strike-slip in South China Block[J].Chinese Journal of Geology,56(3):808-828.
Liu Shanbao, Chen Yuchuan, Fan Shixiang,et al,2010.The second ore-prospecting space in the eastern and central parts of the Nanling metallogenic belt:Evidence from isotopic chronology[J].Geology in China,37(4):1034-1049.
Mao J W, Cheng Y B, Chen M H,et al,2013.Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J].Mineralium Deposita,48(3):267-294.
Mao J W, Ouyang H G, Song S W,et al,2019.Geology and metallogeny of tungsten and tin deposits in China[J].SEG Special Publication,22:411-482.
Mao Jingwen, Zhou Zhenhua, Feng Chengyou,et al,2012.A preliminary study of the Triassic large-scale mineralization in China and its geodynamic setting[J].Geology in China,39(6):1437-1471.
Middlemost E A K,1994.Naming materials in the magma/igneous rock system[J].Earth Science Reviews,37(3/4):215-224.
Nakada S, Takahashi M,1979.Regional variation in chemistry of the Miocene intermediate to felsic magmas in the Outer Zone and the Setouchi Province of Southwest Japan[J].The Geological Society of Japan,85(9):571-582.
Ni P, Wang G G, Li W S,et al,2021.A review of the Yanshanian ore-related felsic magmatism and tectonic settings in the Nanling W-Sn and Wuyi Au-Cu metallogenic belts,Cathaysia Block,South China[J].Ore Geology Reviews,133:104088.
Pearce J A, Harris N B W, Tindle A G,1984.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of Petrology,25:956-983.
Pei Rongfu, Wang Yonglei, Li Li,et al,2008.South China great granite province and its metallogenic series of tungsten-tin poly-metallics[J].China Tungsten Industry,23(1):10-13.
Peng J T, Zhou M F, Hu R Z,et al,2006.Precise molybdenite Re-Os and mica Ar-Ar dating of the Mesozoic Yaogangxian tungsten deposit,central Nanling district,South China[J].Mineralium Deposita,41(7):661-669.
Peng Nengli, Wang Xianhui, Yang Jun,et al,2017.Re-Os dating of molybdenite from Sanjiaotan tungsten deposit in Chuankou area,Hunan Province,and its geological implications[J].Mineral Deposits,36(6):1402-1414.
Potratz G L, Geraldes M C, Martins M V A,et al,2021.Sana Granite,a post-collisional S-type magmatic suite of the Ribeira Belt(Rio de Janeiro,SE Brazil)[J].Lithos,388/389:106077.
Ren Jishun,1990.On the geotectonics of south China[J].Acta Geologica Sinica,4(2):275-288.
Rudnick R L, Fountain D M,1995.Nature and compositon of the continental crust:A lower crustal perspective[J].Reviews of Geophysics,33(3):267-309.
Shand S J,1943.Eruptive Rocks[M].New York:John Wiley.
Shu L S, Faure M, Wang B,et al,2008.Late Palaeozoic-Early Mesozoic geological features of South China:Response to the Indosinian collision events in Southeast Asia[J].Com-ptes Rendus Geoscience,340(2/3):151-165.
Shu L S, Faure M, Yu J H,et al,2011.Geochronological and geochemical features of the Cathaysia block (South China):New evidence for the Neoproterozoic breakup of Rodinia[J].Precambrian Research,187(3/4):263-276.
Shu L S, Wang B, Cawood P A,et al,2015.Early Paleozoic and Early Mesozoic intraplate tectonic and magmatic events in the Cathaysia Block,South China[J].Tectonics,34(8):1600-1621.
Shu Liangshu,2012.An analysis of principal features of tectonic evolution in South China Block[J].Geological Bulletin of China,31(7):1035-1053.
Song M J, Shu L S, Santosh M,2017.Early Mesozoic intracontinental orogeny and stress transmission in South China:Evidence from Triassic peraluminous granites[J].Journal of the Geological Society,174(3):591-607.
Sun S S, Mcdonough W F,1989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J].Geological Society,Special Publications,42:313-345.
Sun Tao, Zhou Xinmin, Chen Peirong,et al,2003.The original model and tectonic setting for Mesozoic granites in Eastern Nanling Mountain range[J].Science in China,33(12):1209-1218.
Sylvester P J,1998.Post-collisional strongly peraluminous granites[J].Lithos,45:29-44.
Taylor S R, Mclennan S M,1985.The Continental Crust:Its Composition and Evolution[M].Oxford:Blackwell Scientific Publications.
Thornton C P, Tuttle O F,1960.Chemistry of igneous rocks,Part Ⅰ:Differentiation index[J].American Journal of Science,258:664-684.
Wang Denghong, Chen Yuchuan, Jiang Biao,et al,2020.Preliminary study on the Triassic continental mineralization system in China[J].Earth Science Frontiers,27(2):45-59.
Wang Dezi, Liu Changshi, Shen Weizhou,et al,1993.The contrast between Tonglu I-type and Xiangshan S-type clastoporphyritic lava[J].Acta Petrologica Sinica,9(1):44-54.
Wang Dezi, Zhou Jincheng,2005.New progress in studying the large igneous provinces[J].Geological Journal of China Universities,11(1):1-8.
Whalen J B, Currie K L, Chappell B W,1987.A-type granites:Geochemical characteristics,discrimination and petrogenesis[J].Contributions to Mineralogy and Petrology,95:407-419.
Wu Fuyuan, Li Xianhua, Yang Jinhui,et al,2007.Discussions on the petrogenesis of granites[J].Acta Petrologica Sinica,23(6):1217-1238.
Wu Mingqian,2017.Minerallogy,Geochemistry,and Metallogeny of the Yichun and the Dajishan Deposits[D].Beijing:China University of Geosciences(Beijing).
Xie Guiqing, Mao Jingwen, Zhang Changqing,et al,2021.Triassic deposits in South China:Geological characteristics,ore forming mechanism and ore deposit model[J].Earth Science Frontiers,28(3):252-270.
Xu Xisheng, Deng Ping, Reilly S Y O,et al,2003.Single zircon LA-ICP-MS U-Pb dating of Guidong complex (SE China) and its petrogenetic significance[J].Chinese Science Bulletin,48(12):1328-1334.
Yu Yang, Chen Zhenyu, Chen Zhenghui,et al,2012.Zircon U-Pb dating and mineralization prospective of the Triassic Qingxi pluton in Southern Jiangxi Province[J].Geotectonica et Metallogenia,36(3):413-421.
Zhang Di, Zhang Wenlan, Wang Rucheng,et al,2015.Quartz-vein type tungsten mineralization associated with the Indosinian(Triassic)Gaoling Granite,Miao’ershan Area,Nor-thern Guangxi[J].Geological Review,61(4):817-834.
Zhang G W, Guo A L, Wang Y J,et al,2013.Tectonics of South China continent and its implications[J].Science China Earth Sciences,56(11):1804-1828.
Zhang R Q, Lu J J, Wang R C,et al,2015.Constraints of in situ zircon and cassiterite U-Pb,molybdenite Re-Os and muscovite 40Ar-39Ar ages on multiple generations of granitic magmatism and related W-Sn mineralization in the Wangxianling area,Nanling Range,South China[J].Ore Geology Reviews,65:1021-1042.
Zhao Z, Zhao W W, Lu L,et al,2018.Constraints of multiple dating of the Qingshan tungsten deposit on the Triassic W(-Sn) mineralization in the Nanling region,South China[J].Ore Geology Reviews,94:46-57.
Zhong Jiansheng, Shu Shunping, Yin Weiqing,et al,2010.Resource reserves verification report of the Baishi W-Cu deposit verification area,Ganxian,Jiangxi Province[R].Beijing:National Geological Archives.DOI:10.35080/n01.c.158039.
Zhou X M, Sun T, Shen W Z,et al,2006.Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:A response to tectonic evolution[J].Episodes,29(1):26-33.
Zhou Y, Liang X Q, Wu S C,et al,2015.Isotopic geochemistry,zircon U-Pb ages and Hf isotopes of A-type granites from the Xitian W-Sn deposit,SE China:Constraints on petrogenesis and tectonic significance[J].Journal of Asian Earth Sciences,105:122-139.
陈斌峰,邹新勇,彭琳琳,等,2019.清溪岩体稀土矿床地质特征及重稀土找矿潜力[J].稀土,40(4):20-31.
陈骏,陆建军,陈卫锋,等,2008.南岭地区钨锡铌钽花岗岩及其成矿作用[J].高校地质学报,14(4):459-473.
陈骏,王汝成,朱金初,等,2013.南岭多时代花岗岩的钨锡成矿作用[J].中国科学:地球科学,44(1):111-121.
陈培荣,孔兴功,王银喜,等,1999.赣南燕山早期双峰式火山-侵入杂岩的Rb-Sr同位素定年及意义[J].高校地质学报,5(4):378-383.
陈毓川,裴荣富,张宏良,等,1989.南岭地区与中生代花岗岩类有关的有色及稀有金属矿床地质[M].北京:地质出版社.
范尉茗,王岳军,郭锋,等,2003.湘赣地区中生代镁铁质岩浆作用与岩石圈伸展[J].地学前缘,10(3):159-169.
丰成友,曾载淋,屈文俊,等,2015.赣南兴国县张家地钼钨矿床成岩成矿时代及地质意义[J].岩石学报,31(3):709-724.
丰成友,丰耀东,许建祥,等,2007.赣南张天堂地区岩体型钨矿晚侏罗世成岩成矿的同位素年代学证据[J].中国地质,34(4):642-650.
郭春丽,郑佳浩,楼法生,等,2012.华南印支期花岗岩类的岩石特征、成因类型及其构造动力学背景探讨[J].大地构造与成矿学,36(3):457-472.
华仁民,陈培荣,张文兰,等,2005.论华南地区中生代3次大规模成矿作用[J].矿床地质,24(2):99-107.
江西省地质局,1974.区域地质调查报告——兴国幅(1∶200000)[R].南昌:江西省地质局.
李光来,华仁民,韦星林,等,2011.江西中部徐山钨铜矿床单颗粒白云母Rb-Sr等时线定年及其地质意义[J].地球科学(中国地质大学学报),36(2):282-288.
李献华,李武显,李正祥,2007.再论南岭燕山早期花岗岩的成因类型与构造意义[J].科学通报,52(9):981-991.
梁华英,伍静,孙卫东,等,2011.华南印支成矿讨论[J].矿物学报,31(增1):53-54.
刘福来,许志琴,杨经绥,等,2004.中国大陆科学钻探工程主孔及周边地区花岗质片麻岩的地球化学性质和超高压变质作用标志的识别[J].岩石学报,20(1):9-26.
刘欢,赵希林,江涧,等,2021.华南中生代左行走滑活动探讨:以兴国旋卷构造为例[J].地质科学,56(3):808-828.
刘善宝,陈毓川,范世祥,等,2010.南岭成矿带中、东段的第二找矿空间——来自同位素年代学的证据[J].中国地质,37(4):1034-1049.
毛景文,周振华,丰成友,等,2012.初论中国三叠纪大规模成矿作用及其动力学背景[J].中国地质,39(6):1437-1471.
裴荣富,王永磊,李莉,等,2008.华南大花岗岩省及其与钨锡多金属区域成矿系列[J].中国钨业,23(1):10-13.
彭能立,王先辉,杨俊,等,2017.湖南川口三角潭钨矿床中辉钼矿Re-Os同位素定年及其地质意义[J].矿床地质,36(6):1402-1414.
任纪舜,1990.论中国南部的大地构造[J].地质学报,4(2):275-288.
舒良树,2012.华南构造演化的基本特征[J].地质通报,31(7):1035-1053.
孙涛,周新民,陈培荣,等,2003.南岭东段中生代强过铝花岗岩成因及其大地构造意义[J].中国科学(D辑),33(12):1209-1218.
王德滋,刘昌实,沈渭洲,等,1993.桐庐I型和相山S型两类碎斑熔岩对比[J].岩石学报,9(1):44-54.
王德滋,周金城,2005.大火成岩省研究新进展[J].高校地质学报,11(1):1-8.
王登红,陈毓川,江彪,等,2020.中国三叠纪大陆成矿体系[J].地学前缘,27(2):45-59.
吴福元,李献华,杨进辉,等,2007.花岗岩成因研究的若干问题[J].岩石学报,23(6):1217-1238.
吴鸣谦,2017.江西宜春(四一四)和大吉山矿床的矿物学、地球化学及成矿作用研究[D].北京:中国地质大学(北京).
谢桂青,毛景文,张长青,等,2021.华南地区三叠纪矿床地质特征、成矿规律和矿床模型[J].地学前缘,28(3):252-270.
徐夕生,邓平, Reilly S Y O,等,2003.华南贵东杂岩体单颗粒锆石激光探针ICPMS U-Pb定年及其成岩意义[J].科学通报,48(12):1328-1334.
于扬,陈振宇,陈郑辉,等,2012.赣南印支期清溪岩体的锆石U-Pb年代学研究及其含矿性评价[J].大地构造与成矿学,36(3):413-421.
张迪,张文兰,王汝成,等,2015.桂北苗儿山地区高岭印支期花岗岩及石英脉型钨成矿作用[J].地质论评,61(4):817-834.
钟建昇,舒顺平,尹维青,等,2010.江西省赣县白石山钨铜矿核查区资源储量核查报告[R].北京:全国地质资料馆.DOI:10.35080/n01.c.158039.
[1] 魏生云,王建国,郭学忠,邢佳. 柴北缘夏日达乌铌钽矿区花岗岩地球化学特征及地质意义[J]. 黄金科学技术, 2023, 31(3): 408-422.
[2] 范红科,郭根明,董波波,张凯,刘豫新. 新疆焉耆县松树达坂金矿区岩石地球化学异常特征及找矿效果[J]. 黄金科学技术, 2021, 29(4): 477-488.
[3] 鞠培姣. 山西灵丘县梨园金矿地质特征及控矿因素分析[J]. 黄金科学技术, 2018, 26(6): 706-717.
[4] 陈静,胡继春,逯永卓,卢世银,王树林,徐贝贝. 东昆仑小灶火地区钼矿化正长花岗岩年代学、地球化学特征及其地质意义[J]. 黄金科学技术, 2018, 26(4): 465-472.
[5] 刘学龙,杨富成,张昌振,罗应,王帅帅. 滇西北雪鸡坪斑岩型铜矿构造特征与成矿作用研究[J]. 黄金科学技术, 2018, 26(4): 473-480.
[6] 唐卫东, 马庆, 王郅睿. 青海献礼山地区1/5万水系沉积物地球化学特征及其地质意义[J]. 黄金科学技术, 2018, 26(3): 289-296.
[7] 王纪昆,宋蓓蓓,胡瑞刚. 河北安妥岭钼矿床地质特征及找矿方向[J]. 黄金科学技术, 2017, 25(4): 18-25.
[8] 李洪奎,李逸凡,梁太涛,李大鹏,禚传源,耿科. 山东胶东型金矿的概念及其特征[J]. 黄金科学技术, 2017, 25(1): 1-8.
[9] 牛树银,孙爱群,刘晓煌,张建珍,张福祥,陈超,马宝军,侯江龙. 胶东地区北泊金矿构造特征及其控矿作用[J]. 黄金科学技术, 2016, 24(6): 1-7.
[10] 李太兵,李永光,王先林,宋耕海. 山东金山金矿床成矿流体特征和成矿作用[J]. 黄金科学技术, 2015, 23(6): 10-16.
[11] 汪洋,铁健康,牛树银,冯绍平,汪江河. 熊耳山地区七里坪F60 -Ⅰ金银矿体地质特征及趋势预测成效[J]. 黄金科学技术, 2015, 23(2): 38-44.
[12] 王建中,钱壮志,姜超,徐刚,柳世强,唐文恒. 南秦岭白马山金矿区石英闪长岩地球化学特征及其构造意义[J]. 黄金科学技术, 2014, 22(5): 30-38.
[13] 张运强,陈海燕,刘应龙,张立国,张建珍,董洪凯,刘广,刘思林. 冀北寿王坟铜矿石英二长岩LA-ICP-MS锆石U-Pb年龄和地球化学特征[J]. 黄金科学技术, 2014, 22(3): 23-29.
[14] 宋凯,郝晓圆,汪江河,赵春和,孔源,牛树银. 豫西上宫金矿构造控矿特征及成矿作用探讨[J]. 黄金科学技术, 2013, 21(6): 30-35.
[15] 李洪奎,时文革,李逸凡,李璐邑,韩代成,曹丽丽,刘继梅. 山东胶东地区金矿成矿时代研究[J]. 黄金科学技术, 2013, 21(3): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!