黄金科学技术 ›› 2023, Vol. 31 ›› Issue (4): 624-634.doi: 10.11872/j.issn.1005-2518.2023.04.026
摘要:
爆破振动速度峰值(Peak Particle Velocity,PPV)的准确预测是有效控制爆破工程振动危害的前提。为了提高爆破振动速度峰值的预测精度,提出将黏菌算法(Slime Mould Algorithm,SMA)对随机森林(Random Forest,RF)中的树的个数和最小叶子点数2个超参数进行优化。以某露天爆破工程实例中收集的具有4个输入参数(最小抵抗线r、高差H、最大段药量Qmax、水平距离W)和1个输出参数(PPV)的23个样本的数据集为依据,将4种参数组合(Qmax-H-W-r、Qmax-H-r、Qmax-W-r、Qmax-r)作为随机森林算法中的输入参数,确定最优的参数组合。随后对SMA-RF模型、未优化RF模型和国内外常用的6组经验公式的预测结果进行比较,结果表明SMA-RF模型取得了最优的预测效果,因此在工程实践中推荐使用SMA-RF模型预测爆破振动速度峰值。
中图分类号:
Breiman L,2001.Random forests[J].Machine Learning,45(1):5-32. | |
Chen Yibing, Li Tianyi, Li Xinyan,et al,2022.Research on the relationship between typhoon precipitation cloud spectrum and precipitation based on random forest and remote sensing[J].Remote Sensing Technology and Application,37(5):1277-1288. | |
Davies B, Farmer I W, Attewell P B,1964.Ground vibration from shallow sub-surface blasts[J].Engineer,217:553-559. | |
Fan Yong, Pei Yong, Yang Guangdong,et al,2022.Prediction of blasting vibration velocity peak based on an improved PSO-BP neural network[J].Journal of Vibration and Shock,41(16):194-203,302. | |
Guo Qinpeng, Yang Shijiao, Zhu Zhonghua,et al,2020.Predition of blasting vibration velocity using GA-BP neural network[J].Blasting,37(3):148-152. | |
Guo H, Zhou J, Koopialipoor M,et al,2021.Deep neural network and whale optimization algorithm to assess flyrock induced by blasting[J].Engineering with Computers,37:173-186 . | |
Hu X, Qu S,2018.A new approach for predicting bench blasting-induced ground vibrations:A case study[J].Journal of the Southern African Institute of Mining and Metallurgy,118(5):531-538. | |
Jiang Nan, Zhou Chuanbo, Ping Wen,et al,2014.Altitude effect of blasting vibration velocity in rock slopes[J].Journal of Central South University(Science and Technology),45(1):237-243. | |
Lee S L A, Kouzani A Z, Hu E J,2010.Random forest based lung nodule classification aided by clustering[J].Computerized Medical Imaging and Graphics,34(7):535-542. | |
Li S, Chen H, Wang M,et al,2020.Slime mould algorithm:A new method for stochastic optimization[J].Future Generation Computer Systems,111:300-323. | |
Li Xiaohan, Liu Kewei, Yang Jiacai,et al,2019.Analysis of blasting vibration effects under different ground stress[J].Gold Science and Technology,27(2):241-248. | |
Lin H P, Ahmadianfar I, Amiri Golilarz N,et al,2022.Adaptive slime mould algorithm for optimal design of photovoltaic models[J].Energy Science and Engineering,10(7):2035-2064. | |
Liu Qiang, Li Xibing, Liang Weizhang,2018.PCA-RF model for the classification of rock mass quality and its application[J].Gold Science and Technology,26(1):49-55. | |
Luo Xiaofeng, Qiu Wei, Huang Wenlong,et al,2020. Correction of blasting vibration propagation attenuation formula under complex terrain based on dimensional theory[C]// Engineering Construction Collection of Pumped Storage Power Station.Beijing:China Water Resources and Hydropower Publishing House. | |
Roy P P,1993.Putting ground vibration predictions into practice[J].Colliery Guardian,241(2):63-67. | |
Siskind D E, Stagg M S, Kopp J W,et al,1980.Structure response and damage produced by ground vibration from surface mine blasting[R]. Washington:United States,Bureau of Mines. | |
Tan Wenhui, Qu Shijie, Mao Shilong,et al,2010.Altitude effect of blasting vibration in slopes[J]. Chinese Journal of Geotechnical Engineering,32(4):619-623. | |
Yang Lianbing, Chen Chunbo, Zheng Hongwei,et al,2021.Retrieval of soil salinity content based on random forests regression optimized by Bayesian optimization algorithm and gentic algorithm[J].Journal of Geo-information Science,23(9):1662-1674. | |
Yang Youfa, Cui Bo,2009.Prediction of peak blasting velocity[J].Journal of Vibration and Shock,28(10):195-198,234-235. | |
Zhang P, Yin Z Y, Jin Y F,et al,2020.A novel hybrid surrogate intelligent model for creep index prediction based on particle swarm optimization and random forest[J].Engineering Geology,265:105328. | |
Zhang Yan, Wang Pengpeng,2022.Blasting vibration velocity prediction model based on RVM[J].Blasting,39(1):168-174. | |
Zhao Huabing, Long Yuan, Song Kejian,et al,2012.Predictive methods and influence factors of blasting vibration velocity[J].Engineering Blasting,18(1):24-27. | |
Zhou You, Chen Zuobin, Wang Jing,et al,2016.Effects of minimum burden on deep-hole rock blasting block size[J]. Engineering Blasting,22(6):70-74. | |
陈绎冰,李天依,李欣艳,等,2022.基于随机森林和遥感的台风降水云光谱与降水关系研究[J].遥感技术与应用,37(5):1277-1288. | |
范勇,裴勇,杨广栋,等,2022.基于改进PSO-BP神经网络的爆破振动速度峰值预测[J].振动与冲击,41(16):194-203,302. | |
郭钦鹏,杨仕教,朱忠华,等,2020.运用GA-BP神经网络对爆破振动速度预测[J].爆破,37(3):148-152. | |
蒋楠,周传波,平雯,等,2014.岩质边坡爆破振动速度高程效应[J].中南大学学报(自然科学版),45(1):237-243. | |
李萧翰,刘科伟,杨家彩,等,2019.不同地应力下爆破振动效应分析[J].黄金科学技术,27(2):241-248. | |
刘强,李夕兵,梁伟章,2018.岩体质量分类的PCA-RF模型及应用[J].黄金科学技术,26(1):49-55. | |
骆晓锋,邱伟,黄文龙,等,2020.基于量纲理论的复杂地形下爆破振动传播衰减公式修正[C]//抽水蓄能电站工程建设文集.北京:中国水利水电出版社. | |
谭文辉,璩世杰,毛市龙,等,2010.边坡爆破振动高程效应分析[J].岩土工程学报,32(4):619-623. | |
杨练兵,陈春波,郑宏伟,等,2021.基于优化随机森林回归模型的土壤盐渍化反演[J].地球信息科学学报,23(9):1662-1674. | |
杨佑发,崔波,2009.爆破振动速度峰值的预测[J].振动与冲击,28(10):195-198,234-235. | |
张研,王鹏鹏,2022.基于RVM的爆破振动速度预测模型[J].爆破,39(1):168-174. | |
赵华兵,龙源,宋克健,等,2012.爆破振动速度预测方法及其影响因素[J].工程爆破,18(1):24-27. | |
周游,陈作彬,王静,等,2016.最小抵抗线对深孔岩石爆破块度的影响[J].工程爆破,22(6):70-74. |
[1] | 谢饶青, 陈建宏, 肖文丰. 基于NPCA-GA-BP神经网络的采场稳定性预测方法[J]. 黄金科学技术, 2022, 30(2): 272-281. |
[2] | 王梅,陈建宏,杨珊. 基于等维动态马尔科夫SCGM(1,1)C模型的黄金价格预测[J]. 黄金科学技术, 2020, 28(1): 158-166. |
[3] | 李夕兵,朱玮,刘伟军,张德明. 基于主成分分析法与RBF神经网络的岩体可爆性研究[J]. 黄金科学技术, 2015, 23(6): 58-63. |
|