img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (1): 144-152.doi: 10.11872/j.issn.1005-2518.2023.01.140

• 采选技术与矿山管理 • 上一篇    

基于LoRa和物联网技术的矿井环境监测系统设计

蓝升传1(),陶干强1,房智恒2,曾庆田3,王史文3,朱忠华1()   

  1. 1.南华大学资源与环境安全工程学院,湖南 衡阳 421001
    2.中冶长天国际工程有限责任公司,湖南 长沙 410205
    3.云南迪庆有色金属有限责任公司,云南 香格里拉 674400
  • 收稿日期:2022-10-10 修回日期:2022-12-08 出版日期:2023-02-28 发布日期:2023-03-27
  • 通讯作者: 朱忠华 E-mail:20212002210096@stu.usc.edu.cn;zzhnihao545@126.com
  • 作者简介:蓝升传(1997-),男,安徽滁州人,硕士研究生,从事环境监测领域相关研究工作。 20212002210096@stu.usc.edu.cn
  • 基金资助:
    金属矿山安全与健康国家重点实验室开放基金项目“深井开采工程岩体质量数字化评价关键技术研究”(2018-JSKSSYS-01);湖南省教育厅优青项目“砂岩型铀矿床全矿域数字化渗透模型构建方法”(21B0446);云南迪庆有色金属有限责任公司企业委托项目“普朗铜矿采矿自然崩落放矿与地表塌陷规律研究”联合资助

Design of Mine Environmental Monitoring System Based on LoRa and IoT Technology

Shengchuan LAN1(),Ganqiang TAO1,Zhiheng FANG2,Qingtian ZENG3,Shiwen WANG3,Zhonghua ZHU1()   

  1. 1.School of Resource Environment and Safety Engineering, University of South China, Changsha 421001, Hunan, China
    2.MCC Changtian International Engineering Co. , Ltd. , Changsha 410205, Hunan, China
    3.Yunnan Diqing Non-ferrous Metals Co. , Ltd. , Shangri -La 674400, Yunnan, China
  • Received:2022-10-10 Revised:2022-12-08 Online:2023-02-28 Published:2023-03-27
  • Contact: Zhonghua ZHU E-mail:20212002210096@stu.usc.edu.cn;zzhnihao545@126.com

摘要:

矿山井下环境特殊,且开采过程常伴随有毒有害气体,在对此类环境参数进行采集与传输时,常用无线通信技术存在通信距离短和抗干扰差的弊端。为解决此问题,设计了一套基于LoRa和物联网技术的矿井环境监测系统,对井下环境进行实时监测,并通过LoRa模块进行传输。监测系统包括数据采集端、汇总终端和数据监测平台3个部分,数据监测平台包括云平台和微信小程序。数据采集端搭配环境多传感器,通过布置多个LoRa中继节点传输监测点数据,实现较长距离无线传输,汇总终端将数据处理后通过WIFI发送至云平台,微信小程序数据通过调用云平台数据得到,最终完成监测数据的存储及可视化。测试结果表明:该系统功能稳定,能够实现井下的环境监测功能,易于安装、便于二次开发且井下无需排线。本研究进一步完善了矿山安全监测系统,增强了矿山灾害防治能力与应急救援能力。

关键词: 矿山通信, 环境监测, LoRa, 物联网, STM32, 微信小程序

Abstract:

The underground environment of mine is special,and the mining process is often accompanied by toxic and harmful gases.For the collection and transmission of such environmental parameters,the common wireless communication technology has the disadvantages of short communication distance and poor anti-interference.To solve this problem,a mine environment monitoring system based on LoRa and IOT technology was designed to monitor the underground environment in real time and transmit through LoRa modules.The monitoring system includes three parts,namely data collection end,aggregation terminal,and data monitoring platform,and the data monitoring platform includes cloud platform and WeChat applet.The data collection end is paired with environmental multi-sensors and transmits monitoring point data by arranging multiple LoRa relay nodes to achieve longer distance wireless transmission.The aggregation terminal sends the data to the cloud platform through WIFI after processing.The WeChat applet data is obtained by calling the cloud platform data and finally completes the storage and visualization of monitoring data.The test results show that the system is functionally stable,can realize the environmental monitoring function of underground,and it is easy to install,easy to secondary development and no need to line up underground.This study provides a reference for the design of underground environmental monitoring systems in similar mines.This study can improve the mine safety monitoring system and enhance the capacity of mine disaster prevention and emergency rescue.

Key words: mine communications, environmental monitoring, LoRa, Internet of Things, STM32, WeChat applet

中图分类号: 

  • TD76

图1

系统总体结构图"

图2

系统总体硬件框图"

图3

MQ-4传感器电路"

图4

数据采集端软件设计流程"

图5

汇总端软件设计流程图"

图6

地表测试点"

表1

地表通信质量测试结果"

组数传输距离/m发送数据包数/个接收数据包数/个丢包率/%
1501001000
21001001000
31501001000
42001001000
5250100991
6300100982
7350100964
8400100964
9450100928
105001008713

图7

系统整体性能验证点"

图8

实物图"

表2

矿井通信质量测试结果"

组数传输距离/m发送数据包数/个接收数据包数/个丢包率/%
1501001000
21001001000
31501001000
42001001000
52501001000
63001001000
73501000100
84001000100

图9

微信小程序监测页面"

图10

云平台监测页面"

Abrardo A, Pozzebon A,2019. A multi-hop LoRa linear sensor network for the monitoring of underground environments: The case of the medieval aqueducts in Siena, Italy[J]. Sensors,19(2):402.
Chen Baoyuan, Chu Qingwen, Sun Zhongxiang,et al,2017.The solution of IOT based on OneNet cloud server[J].Journal of Harbin University of Science and Technology,22(5):76-80.
Chen Yuping,2013.Design of a wireless methane concentration monitoring system based on “Holtek” MCU and nRF905[J].Electronics World,(24):38-39.
Chu M, Patton A, Roering J,et al,2021.SitkaNet:A low-cost,distributed sensor network for landslide monitoring and study[J].HardwareX,9:e00191.doi:10.1016/j.ohx.2021.e00191 .
doi: 10.1016/j.ohx.2021.e00191
Feng Yuchen, Lu Ziqing, Feng Shuo,et al,2021.Intelligent detection system of environment under mine based on STM32F407 and LoRa[J].Manufacture and Upgrading Today,(4):28-29,36.
Guo Wei, Wang Chenhui, Li Peng,et al,2020.Design of the distributed real-time monitoring system for geological hazards based on LoRa[J].Hydrogeology & Engineering Geology,47(4):107-113.
Han Tuanjun, Yin Jiwu, Zhao Zengqun,et al,2019.Design and research of mine data monitoring system based on LoRa technology[J].Modern Electronics Technique,42(20):160-163.
He Hongjiang, Liu Chuncheng, Ren Jiantao,2016.Implementation of mine environment monitoring system based on STM32[J].Automation & Instrumentation,31(3):63-67.
Herring B, Sharp T, Roberts T,et al,2022.Underground LoRa sensor node for bushfire monitoring[J].Fire Technology,58(3):1087-1095.
Huo Zhenlong,2022.Current situation and development trend of mine wireless communication system[J].Journal of Mine Automation,48(6):1-5.
Jin Feng, Zhang Da, Zhan Kai,2013.Wireless communications technology for underground metal mines[J].Nonferrous Metals(Mining Section),65(1):1-6,23.
Liu Q, Bai X J, Gan X L,et al,2021.Lora RTT ranging characterization and indoor positioning system[J].Wireless Communications and Mobile Computing,2021:1-10.
Liu Yu, Hu Shangmao, Liu Gang,et al,2023.Wireless transmission scheme of transmission line monitoring signals in mountainous area based on LoRa and GPRS[J].High Voltage Apparatus,59(2):177-183,189.
Ma Xujing, Xu Lei,2018.Research status and development trend of gas sensors[J].Transducer and Microsystem Technologies,37(5):1-4,12.
RayChowdhury A, Pramanik A, Roy G C,2021.New approach for localization and smart data transmission inside underground mine environment[J].SN Applied Sciences,3(6):604.
Shen Liqun, Liu Yi,2002.Network management of mining survey data[J].Journal of Liaoning Technical University(Natural Science),(3):302-305.
Song Y H, Lin J, Tang M,et al,2017.An internet of energy things based on wireless LPWAN[J].Engineering,3(4):460-466.
Wang C H, Guo W, Yang K,et al,2022.Real-time monitoring system of landslide based on LoRa architecture[J].Frontiers in Earth Science.doi:10.3389/FEART.2022.899509 .
doi: 10.3389/FEART.2022.899509
Wang Datao, Teng Degui, Li Chao,2018.Tunnel health-monito-ring system based on low-power wireless sensor networks[J].Bulletin of Surveying and Mapping,(Supp.1):273-277.
Wang Jun, Gu Yidong, Zeng Ke,2017.Application analysis of WiFi communication technology in coal mine informatization[J].Journal of Mine Automation,43(7):90-93.
Wu Fengbo, Qiantong Lü,2019.Design of downhole environmental monitoring system based on embedded technology[J].Modern Electronics Technique,42(13):42-46.
Xin Xianyao,2021.Safety investment and supervision of group coal enterprises based on evolutionary game[J].Coal Engineering,53(2):186-190.
You Qihan, Chen Zhaoshi, Zhang Qin,2017.Smart classroom system based on OneNET cloud platform WiFi remote control[J].Microcontrollers & Embedded Systems,17(10):69-73.
Zhang Wentao, Li Aiwu,2005.RHZM-Ⅰ radon and it’s daughters continuous monitor[J].Nuclear Electronics and Detection Technology,(6):250-252.
Zhang Zheng, Cao Shouqi, Zhu Jianping,et al,2019.Long range low power sensor networks with LoRa sensor for large area fishery environment monitoring[J].Transactions of the Chinese Society of Agricultural Engineering,35(1):164-171.
Zhou Yuanzhi,2022.Design and Implementation of Smart Agriculture System Based on Wireless Sensors Networks[D].Chengdu:University of Electronic Science and Technology of China.
陈宝远,褚庆文,孙忠祥,等,2017.一种基于OneNet设备云的智能硬件组网方法[J].哈尔滨理工大学学报,22(5):76-80.
陈于平,2013.基于“盛群”单片机和nRF905的甲烷浓度无线监测系统设计[J].电子世界,(24):38-39.
冯宇宸,陆子清,冯烁,等,2021.基于STM32F407与LoRa的矿下采空区环境智能检测系统[J].今日制造与升级,(4):28-29,36.
郭伟,王晨辉,李鹏,等,2020.基于LoRa的地质灾害分布式实时监测系统设计[J].水文地质工程地质,47(4):107-113.
韩团军,尹继武,赵增群,等,2019.基于LoRa技术的矿井数据监测系统的设计与研究[J].现代电子技术,42(20):160-163.
贺洪江,刘春成,任建涛,2016.基于STM32的矿井环境分布式检测系统研究[J].自动化与仪表,31(3):63-67.
霍振龙,2022.矿井无线通信系统现状与发展趋势[J].工矿自动化,48(6):1-5.
金枫,张达,战凯,2013.地下金属矿无线通讯技术[J].有色金属(矿山部分),65(1):1-6,23.
刘宇,胡上茂,刘刚,等,2023.基于LoRa和GPRS的山区输电线路监测信号无线传输方案[J].高压电器,59(2):177-183,189.
马须敬,徐磊,2018.气体传感器的研究现状与发展趋势[J].传感器与微系统,37(5):1-4,12.
申立群,刘谊,2002.矿山测量数据的网络化管理[J].辽宁工程技术大学学报(自然科学版),(3):302-305.
王大涛,滕德贵,李超,2018.基于低功耗无线传感网络的隧道健康监测系统[J].测绘通报,(增1):273-277.
王军,顾义东,曾苛,2017.WiFi通信技术在煤矿信息化中的应用分析[J].工矿自动化,43(7):90-93.
武风波,吕茜彤,2019.基于嵌入式的井下环境监测系统设计[J].现代电子技术,42(13):42-46.
辛宪耀,2021.基于演化博弈的集团化煤炭企业安全投入与监督研究[J].煤炭工程,53(2):186-190.
尤琦涵,陈兆仕,张沁,2017.OneNET云平台WiFi远程控制的智能教室系统[J].单片机与嵌入式系统应用,17(10):69-73.
张文涛,李爱武,2005.RHZM-Ⅰ型氡及其子体连续监测仪[J].核电子学与探测技术,(6):250-252.
张铮,曹守启,朱建平,等,2019.面向大面积渔业环境监测的长距离低功耗LoRa传感器网络[J].农业工程学报,35(1):164-171.
周援植,2022.基于无线传感器网络技术的智慧农业系统设计与实现[D].成都:电子科技大学.
[1] 谢学斌, 刘涛, 张欢. 基于改进CEEMDAN-DCNN的声发射源识别分类方法[J]. 黄金科学技术, 2022, 30(2): 209-221.
[2] 邵良杉,闻爽爽. 基于GRU神经网络的巷道平均风速获取研究[J]. 黄金科学技术, 2021, 29(5): 709-718.
[3] 毕林,周超,姚鑫. 基于视频序列的矿卡司机不安全行为识别[J]. 黄金科学技术, 2021, 29(1): 14-24.
[4] 王牧帆,罗周全,于琦. 基于 Stacking 模型的采空区稳定性预测[J]. 黄金科学技术, 2020, 28(6): 894-901.
[5] 廖智勤, 王李管, 何正祥. 基于EEMD和关联维数的矿山微震信号特征提取和分类[J]. 黄金科学技术, 2020, 28(4): 585-594.
[6] 党明智,张君,贾明涛. 黄土坡铜锌矿微震监测技术应用与灾害预警方法研究[J]. 黄金科学技术, 2020, 28(2): 246-254.
[7] 随晓丹,罗周全,秦亚光,王玉乐,彭东. 基于小波分解的尾矿坝浸润线预测方法研究[J]. 黄金科学技术, 2019, 27(1): 137-143.
[8] 张二洋,陈建宏. 基于Surpac矿山设计软件及虚幻引擎实现的矿山虚拟现实漫游系统[J]. 黄金科学技术, 2017, 25(4): 93-98.
[9] 刘晓明,赵君杰,彭平安,毕林,代碧波. 有效微震信号自动识别技术研究[J]. 黄金科学技术, 2017, 25(3): 84-91.
[10] 聂兴信,张国丹. 基于熵值法—突变理论的地下矿山紧急避险系统可靠性研究[J]. 黄金科学技术, 2016, 24(6): 72-77.
[11] 王婷玉,罗周全,秦亚光,孙杨. 主溜井垮塌三维探测及可视化分析与计算[J]. 黄金科学技术, 2016, 24(1): 97-101.
[12] 尹土兵,王品,张鸣鲁. 基于AHP及模糊综合评判的地下金属矿山安全分析与评价[J]. 黄金科学技术, 2015, 23(3): 60-66.
[13] 秦亚光,罗周全,周吉明,汪伟,孙杨. 采空区可视化集成系统信息管理研究与应用[J]. 黄金科学技术, 2015, 23(2): 57-62.
[14] 赵永未,王京海,吕春堂,杨力纲,朱会凯. Dini03数字水准仪在望儿山采空区沉降监测及地质灾害预测分析中的应用[J]. 黄金科学技术, 2013, 21(6): 68-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨宝荣, 杨小斌. 青海都兰果洛龙洼金矿床地质特征及控矿因素浅析[J]. J4, 2007, 15(1): 26 -30 .
[2] 谢覃江. 云南省人头箐金矿床地质特征及成因探讨[J]. 黄金科学技术, 0, (): 0 .
[3] 段留安,戚静洁,顿美霞. 乳山市中庄金矿区地质特征及找矿方向[J]. J4, 2007, 15(6): 24 -29 .
[4] 段留安, 赵明传, 王志军. 乳山西涝口矿区成矿规律及找矿分析[J]. J4, 2009, 17(3): 31 -34 .
[5] 马凤山,赵海军,郭捷,王杰,魏爱华. 山东望儿山矿区浅部复采对井筒稳定性影响的数值模拟[J]. J4, 2012, 20(4): 49 -53 .
[6] 周坤,郑立明. 最近距离法在贵金属矿体圈定中的应用——以南非某层状铂矿为例[J]. 黄金科学技术, 2013, 21(3): 55 -58 .
[7] 赵明传,段留安,宋耕海,王先林. 山东栖霞金山金矿床地质特征及找矿预测[J]. 黄金科学技术, 2016, 24(2): 67 -75 .
[8] 王新民,荣帅,赵茂阳,张钦礼. 基于变权重理论和TOPSIS的尾砂浓密装置优选[J]. 黄金科学技术, 2017, 25(3): 77 -83 .
[9] 段留安. 乳山西涝口矿区地质特征及找矿探讨[J]. J4, 2008, 16(3): 30 -33 .
[10] 刘建中, 夏勇, 邓一明, 苏文超, 张兴春, 邱林, 陈明, 陈发恩, 付芝康. 贵州水银洞Sbt研究及区域找矿意义探讨[J]. J4, 2009, 17(3): 1 -5 .