img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2023, Vol. 31 ›› Issue (1): 1-14.doi: 10.11872/j.issn.1005-2518.2023.01.136

• 矿产勘查与资源评价 •    下一篇

东昆仑祁漫塔格地区库德尔特金矿区花岗闪长岩的时代、成因及其构造意义

张勇(),张爱奎,何书跃,刘智刚,刘永乐,张鹏,孙非非   

  1. 青海省第三地质勘查院,青海 西宁 810029
  • 收稿日期:2022-10-08 修回日期:2022-11-29 出版日期:2023-02-28 发布日期:2023-03-27
  • 作者简介:张勇(1982-),男,四川江油人,高级工程师,从事矿床学研究与矿产勘查工作。qhskyzy@163.com
  • 基金资助:
    青海省科技厅项目“东昆仑西段金矿成矿规律及找矿突破”(2019-ZJ-7009);“青海省东昆仑地区榴辉岩与成矿耦合关系研究”(青地矿科[2021]61号)

Age,Petrogenesis and Tectonic Significance of Granodiorite in Kudeerte Gold Deposit,Qimantage Area,East Kunlun

Yong ZHANG(),Aikui ZHANG,Shuyue HE,Zhigang LIU,Yongle LIU,Peng ZHANG,Feifei SUN   

  1. The Third Geological Exploration Institute of Qinghai Province,Xining 810029,Qinghai,China
  • Received:2022-10-08 Revised:2022-11-29 Online:2023-02-28 Published:2023-03-27

摘要:

库德尔特金矿床是东昆仑祁漫塔格新发现的一处中型金矿床,金矿赋存于花岗闪长岩中。通过对花岗闪长岩开展岩石地球化学、锆石U-Pb年代学和Hf同位素研究,探讨该矿床成岩时代、成因类型和构造环境。研究结果显示:花岗闪长岩为一套准铝质高钾钙碱性岩石系列,呈现轻稀土富集的右倾分配模式,具有较明显的负Eu异常,富集大离子亲石元素(Rb、K)、活泼不相容元素(Th、U)和LREE元素,相对亏损高场强元素(Nb、Ta、Ti、P)、HREE元素和Sr元素,成岩年龄为(242.9±1.3)Ma。结合前人研究成果,认为库德尔特花岗闪长岩是在中三叠世大洋板块俯冲与碰撞转换环境中形成的I型花岗岩。

关键词: 花岗闪长岩, 锆石U-Pb定年, 地球化学特征, 金矿床, 库德尔特, 东昆仑祁漫塔格

Abstract:

The Kudeerte gold deposit is a medium-sized gold deposit newly discovered in the western section of East Kunlun.Granodiorite is the host rock of gold deposit,but the petrogenesis,tectonic background and its relationship with mineralization are still unclear.The above questions have been discussed by studying the petrogeochemistry,U-Pb zircon geochronology,and Hf isotopes of the granodiorite in Kudeerte.The petrogeochemical characteristics show that the Kudeerte granodiorite is a set of quasi-aluminum-potassium basalt rocks,showing a right-inclined distribution pattern of light rare earth enrichment,with obvious negative Eu anoalies.The relative enrichment of elements such as large-ion lithophile elements Rb and K,the active incompatible elements Th and U,the depleted high field strength (Nb,Ta,Ti),HREE,and Sr elements,with the characteristics of shell-derived magma.Zircon LA-ICP-MS U-Pb dating showes that the age of granodiorite was (242.9±1.3)Ma(n=20,MSWD=0.65).The Kudeerte granodiorite is a Ⅰ-type granitic rock series of aluminous high potassium calc-alkaline rocks formed in the Middle Triassic.The tectonic environment is the transition environment between subduction and collision of oceanic plate.

Key words: granodiorite, zircon U-Pb dating, geochemistry characteristics, gold deposit, Kudeerte, Qimantage of East Kunlun

中图分类号: 

  • P618.51

图1

库德尔特金矿床地质简图(a)东昆仑构造单元及金矿床分布(修改自李金超等,2015);(b)库德尔特区域地质简图(修改自张勇等,2017);(c)库德尔特矿区地质简图1.第四系;2.奥陶系祁漫塔格群;3.奥陶系祁漫塔格群大理岩组;4.中元古界金水口岩群;5.中三叠世闪长岩;6.中三叠世花岗闪长岩;7.中三叠世二长花岗岩;8.早泥盆世似斑状二长花岗岩;9.闪长玢岩;10.花岗斑岩;11.隐爆角砾岩;12.矽卡岩带;13.铅锌矿体;14.金矿体;15.破碎蚀变带;16.勘探线;17.逆断层;18.性质不明断层;19.钻孔及编号;20.金矿床(点);KNF-昆北断裂;KMF-昆中断裂;KSF-昆南断裂"

图2

库德尔特金矿床12号勘探线剖面图1.大理岩;2.矽卡岩;3.花岗闪长岩;4.探槽位置及编号;5.钻孔位置及编号;6.破碎蚀变带;7.金矿体平均品位和厚度;8.地质界线;9.断层;10.铅锌矿体;11.金矿体(金品位≥1.0×10-6);12.金矿化体(金品位:0.5×10-6~1.0×10-6);13.金矿化体(金品位:0.1×10-6~0.5×10-6);14.样品采集位置"

图3

库德尔特金矿床花岗闪长岩手标本及镜下照片(a)花岗闪长岩及其暗色包体照片;(b)黄铁矿微细脉;(c)黄铁矿细脉中的自然金(扫描电镜);(d)花岗闪长岩正交偏光镜镜下照片Qz-石英;Pl-斜长石;Kp-钾长石;Bit-黑云母;Hb-角闪石;Py-黄铁矿;Ng-自然金"

表1

库德尔特金矿床花岗闪长岩主量、微量元素分析结果"

样品编号SiO2TiO2Al2O3TFe2O3MnOMgOCaONa2OK2OP2O5LOITotalNa2O+K2OK2O/Na2OA/CNKA/NK
KDEG665.340.4214.844.580.551.914.682.034.020.091.0999.566.051.980.9161.931
KDEG767.690.4514.943.460.181.274.921.744.350.110.94100.066.102.490.9041.971
KDEG865.800.5014.834.180.551.644.132.364.190.111.6299.906.551.770.9321.761
KDEG965.430.5914.314.410.551.335.112.443.990.151.3699.696.431.640.8121.717
KDEG1065.500.6514.723.870.560.914.772.364.820.191.3799.717.182.040.8291.618
样品编号σLaCePrNdSmEuGdTbDyHoErTmYbLuY
KDEG61.6126.148.15.6519.103.260.893.030.472.850.601.710.271.750.2914.7
KDEG71.4936.666.67.0823.504.331.154.180.633.510.762.190.352.160.3619.7
KDEG81.8528.854.26.5421.803.861.073.630.563.230.681.900.311.890.3317.4
KDEG91.8123.447.45.5018.803.450.903.120.492.980.601.730.281.720.2814.5
KDEG102.2519.137.64.5015.102.600.702.450.382.390.471.460.241.510.2511.5
样品编号ΣREELREE/HREE(La/Yb)NδEuδCeRbBaThUTaNbSrPZrHf
KDEG6114.099.4010.060.850.90101.050920.33.980.997.9517337613711.2
KDEG7153.359.8411.420.820.92133.060515.74.541.308.6813449214915.3
KDEG8128.799.2810.280.860.90109.058316.64.351.138.6717949116315.6
KDEG9110.668.879.200.820.9594.856715.73.660.978.3621467213512.0
KDEG1088.708.698.530.840.9385.745915.33.350.917.4215680914230.1

图4

库德尔特金矿床花岗闪长岩AFM (a)、SiO2-K2O (b)和A/CNK-A/NK (c)图解注:图4(a)底图据Irvine et al.(1971),图4(b)、4(c)底图据Richter(1989)"

图5

库德尔特金矿床花岗闪长岩球粒陨石标准化稀土配分曲线(a)和微量元素蛛网图(b)注:图(a)标准化值据Taylor et al.(1985);标准化、N-MORB和E-MORB数据据Sun et al.(1989);上、下地壳数据据Taylor et al.(1981,1985);E-MORB-富集型洋中脊玄武岩;N-MORB-亏损型洋中脊玄武岩"

图6

库德尔特金矿床花岗闪长岩锆石阴极发光图像及206Pb/238U年龄(a)LA-ICP-MS U-Pb谐和图(b)和加权平均年龄值(c)"

表2

库德尔特金矿床花岗闪长岩锆石LA-ICP-MS U-Pb同位素分析结果"

测点元素含量/(×10-6Th/U同位素比值表面年龄/Ma
UThPb207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ
1572378290.660.052100.001000.28170.00560.039210.000302904425242482
2469289220.620.051160.001130.26950.00570.038430.000482485124252433
3507326220.640.051810.001630.26960.00740.038170.000722777224262414
4505345240.680.051360.000770.26860.00440.037930.000362573424232402
5679351290.520.052040.001520.27320.00770.038480.000722876724562434
6664531290.800.051180.001890.26720.00830.038160.000552498524072413
7679473300.700.052500.001740.27150.00890.038030.000843077524472415
8669416310.620.051100.000890.26830.00460.038170.000352454024142412
9801334600.420.054470.000510.49910.00670.066400.000693912141154144
10564315240.560.051170.001340.26950.00730.038270.000642486024262424
11632405280.640.053130.000890.28570.00650.039050.000653343825552474
12831610370.730.050880.000750.26930.00520.038360.000532363424242433
131 463520570.360.051500.001550.27150.00690.038430.000922636924452436
14652352270.540.051030.001300.26850.00630.038360.000872425924252435
15565304240.540.051520.001090.26940.00630.038170.000812644924252415
16879572370.650.051270.001380.27030.00570.038490.000882536224352435
17917754420.820.051410.001150.28140.00630.039940.000942595225252526
18753326310.430.051840.001720.27460.00640.038930.000942787624652466
191 549666620.430.055270.001420.29530.00480.038990.000884235726342475
20528319230.600.055670.001390.29620.00710.038970.000904395626362466
21563312240.550.051680.001230.27180.00530.038590.000872715524442445
22478231200.480.051710.001520.26960.00700.038310.000852736724262425
23370159150.430.051720.001230.27250.00550.038520.000572735524542444
24525485250.920.050780.000800.26960.00470.038520.000402313724242442
25605361280.600.050760.001020.26900.00560.038310.000272304724242422
26569337240.590.051860.001430.26930.00710.037920.000852796324262405
27730396300.540.054900.001370.28540.00690.037960.000804085625552405
28560335240.600.051290.001050.27780.00830.039280.000812544724972485
29559268250.480.051090.001340.27420.00740.038790.000662456024662454
30686600310.870.052070.001520.27140.00950.038030.000802896724482415

表3

库德尔特金矿床花岗闪长岩锆石Hf同位素测试结果"

样品编号年龄/Ma176Yb/177Hf2σ176Lu/177Hf2σ176Hf/177Hf2σεHf(t)2σTDM1/MaTDM2/MafLu/Hf
12480.0343700.0001800.0013380.0000100.2825610.000019-2.20.79871416-0.96
22430.0323130.0001600.0012450.0000090.2825510.000018-2.70.69981440-0.96
32410.0314870.0006370.0012970.0000210.2826080.000025-0.70.99191314-0.96
42400.0336990.0004810.0013610.0000120.2825990.000021-1.10.79331336-0.96
52430.0319820.0004540.0012660.0000180.2825700.000019-2.00.79721398-0.96
62410.0384380.0004870.0014420.0000130.2826090.000022-0.70.89211313-0.96
72410.0344210.0002490.0012430.0000050.2825730.000020-1.90.79671392-0.96
82410.0183800.0002060.0007140.0000090.2825380.000017-3.10.610031466-0.98
102420.0222560.0004560.0009110.0000190.2826220.000021-0.10.78901278-0.97
122430.0287240.0007500.0010220.0000190.2825480.000018-2.70.69971445-0.97
132430.0238720.0007280.0008950.0000270.2825550.000022-2.50.89831428-0.97
142430.0344170.0006650.0011930.0000170.2825840.000024-1.50.89501366-0.96
152410.0357590.0007100.0014240.0000220.2826040.000027-0.91.09281324-0.96
162430.0375840.0002630.0013500.0000050.2826490.0000230.80.88621221-0.96
172520.0308040.0001850.0012110.0000090.2825640.000026-2.00.99791406-0.96
182460.0305060.0008490.0011410.0000330.2826350.0000240.40.88771249-0.97
212440.0402000.0017000.0014830.0000350.2825330.000026-3.30.910301483-0.96
222420.0494730.0012630.0017770.0000490.2825850.000022-1.60.89641370-0.95
232440.0248560.0005510.0009410.0000130.2825760.000025-1.70.99551381-0.97
242440.0267400.0002730.0010950.0000080.2826310.0000180.20.68811259-0.97

图7

库德尔特金矿床花岗闪长岩Zr+Nb+Ce+Y-(K2O+Na2O)/CaO(a)、Zr+Nb+Ce+Y-FeOt/MgO(b)、SiO2-Ce(c)和SiO2-Nb(d)图解(底图据Whalen et al.,1987;Collins et al.,1982)A-A型花岗岩;FG-分异长英质花岗岩;OGT-未分异的I型和S型花岗岩"

图8

库德尔特金矿床花岗闪长岩锆石εHf(t)-t图解(a)(底图据吴福元等,2007b)和176Hf/177Hf-t图解(b)(底图据白赟等,2017)"

Amelin Y, Lee D C, Halliday A N,2000.Early-middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains[J].Geochimica et Cosmochimica Acta,64(24):4205-4225.
Bai Yun, Guo Zhouping, Zhao Xinmin,2017.Geochronology,Hf isotopic and geochemical characteristics of Maozang granodiorite in Langlike area,North Qilian Mountain[J].Mineral Deposits,36(1):158-170.
Chappell B W, White A J R,1974.Two contrasting granite type[J].Pacific Geology,8:173-174.
Chen Yuchuan, Wang Denghong, Lin Wenwei,1998.Metallogenic series of rock gold deposits in China[J].Mineral Deposits,17(Supp.1):87-92.
Collins W J, Beams S D, White A J R,et al,1982.Nature and origin of A-type granites with particular reference to southeastern Australia[J].Contributions to Mineralogy and Petrology,80(2):189-200.
Gao Yongbao, Li Kan, Qian Bing,et al,2015.The genesis of granodiorites and dark enclaves from the Kaerqueka deposit in east Kunlun belt:Evidence from zircon U-Pb dating,geochemistry and Sr-Nd-Hf isotopic compositions[J].Geology in China,42(3):646-662.
Guo Xianzheng, Li Yazhi, Jia Qunzi,et al,2018.Geochronology and geochemistry of the Wulonggou orefield related granites in Late Permian-Triassic East Kunlun:Implication for metallogenic tectonic[J].Acta Petrologica Sinica,34 (8):2359-2379.
Guo Zhengfu, Deng Jinfu, Xu Zhiqin,et al,1998.The intermediate-acid igneous rocks and orogenic process from Late Palaeozoic to Mesozoic in East Kunlun,Tibet[J].Geosciences,12(3):51-59.
Hou Kejun, Li Yanhe, Tian Yourong,2009.In situ U-Pb zircon dating using laser ablation-multi ion couting-ICP-MS[J].Mineral Deposits,28(4):481-492.
Irvine T N, Baragar W R A,1971.A guide to the chemical classification of the common volcanic rocks[J].Canadian Journal of Earth Sciences,8(5):523-548.
Jiang Chunfa, Wang Zongqi, Li Jinyi,2000.Opening-Closing Structure in the Central Orogen[M].Beijing:Geological Publising House.
Johnson K E, Harmon R S, Richardson J M,et al,1996.Isotope and trace element geochemistry of Augustine Volcano,Alaska:Implications for magmatic evolution[J].Journal of Petrology,37(1):95-115.
Kou L L, Zhang S,2014.Chronological study of tectonism and mineralization in Wulonggou gold deposit,eastern Kunlun[J].Acta Geologica Sinica(English Edition),88(Supp.2):738-739.
Li Jinchao, Du Wei, Cheng Yongsheng,et al,2015.Characteristics of gold deposits and ore-control factors in the East Kunlun mineralization belt,Qinghai Province[J].Geology and Exploration,51(6):1079-1088.
Li Zhiming, Xue Chunji, Wang Xiaohu,et al,2007.Features of regional mineralizationg and analysis of the exploration development in the eastern Kunlun Mountains[J].Geological Review,53(5):708-718.
Liang Gaizhong, Yang Kuifeng, Fan Hongrui,et al,2022.Genesis of colloidal pyrite and its metallogenic significance in Asiha gold deposit,East Kunlun[J].Gold Science and Te-chnology,30(1):19-33.
Liu Yongle, Zhang Aikui, Liu Zhigang,et al,2022.Metallogenic model of gold deposits and genetic types in the western section of east Kunlun,Qinghai Province[J].Gold Science and Technology,30(4):483-497.
Luo Zhaohua, Deng Jinfu, Cao Yongqing,et al,1999.On Late Paleozoic-Early Mesozoic volcanism and regional tectonic evolution of eastern Kunlun-Qinghai Province[J].Geoscience,13(1):51-56.
Ma Hongwen,1992.Discrimination of genetic types of granitoid rocks[J].Acta Petrologica Sinica,8(4):341-350.
Maniar P D, Piccoli P M,1989.Tectonic discrimination of granitoids[J].Journal of Petrology,101(5):635-643.
Mo Xuanxue, Luo Zhaohua, Deng Jinfu,et al,2007.Granitoids and crustal growth in the East-Kunlun orogenic belt[J].Geological Journal of China Universities,13(3):403-414.
Norbu Namhka, Jia Qunzi, Tang Ling,et al,2015.Zircon U-Pb age and geochemical characteristics of granodiorite from the Haxiyatu iron-polymetallic ore district in Eastern Kunlun[J].Geology in China,42(3):702-712.
Pei Xianzhi, Li Ruibao, Li Zuochen,et al,2018.Composition feature and formation process of Buqingshan composite accretionary mélange belt in southern margin of East Kunlun orogen[J].Earth Science,43(12):4498-4520.
Richter F M,1989.Simple models for trace element fractionation during melt segregation[J].Earth and Planetary Science Letters,77(3/4):333-344.
Sun S S, McDonough W F,1989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J].Geological Society London Special Publications,42:313-345.
Taylor S R, McLennan S M,1981.The composition and evolution of the continental crust:Rare earth element evidence from sedimentary rocks[J].Philosophical Transactions of the Royal Society A,301:381-399.
Taylor S R, McLennan S M,1985.The Continental Crust:Its Composition and Evolution[M].Carlton:Blackwell Scientific Publication.
Wang Bingzhang, Luo Zhaohua, Li Huaiyi,et al,2009.Petrotectonic assemblages and temporal-spatial framework of the Late Paleozoic-Early Mesozoic intrusions in the Qimantage Corridor of the East Kunlun belt[J].Geology in China,36(4):769-782.
Wang C H, Wang D H, Xu J,et al,2015.A preliminary review of metallogenic regularity of gold deposits in China[J].Acta Geologica Sinica(English Edition),89(2):632-651.
Wang Chenghui, Xu Jue, Huang Fan,et al,2014.Resources characteristics and outline of regional metallogeny of gold deposits in China[J].Acta Geologica Sinica,88(12):2315-2325.
Wang Song, Feng Chengyou, Li Shijin,et al,2009.Zircon SHRIMP U-Pb dating of granodiorite in the Kaerqueka polymetallic ore deposit,Qimantage Mountain,Qinghai Pro-vince,and its geological implications[J].Geology in China,36(1):74-82.
Whalen J B, Currie K L, Chappell B W,1987.A-type granites:Geochemical characteristics,discrimination and petrogenesis[J].Contributions to Mineralogy and Petrology,95(4):407-419.
Wu Fuyuan, Li Xianhua, Yang Jinhui,et al,2007a.Discussions on the petrogenesis of granites[J].Acta Petrologica Sinica,23(6):1217-1238.
Wu Fuyuan, Li Xianhua, Zheng Yongfei,et al,2007b.Lu-Hf isotopic systematics and their applications in petrology[J].Acta Petrologica Sinica,23(2):185-220.
Wu Z H, Ye P S, Patrick B J,et al,2009.Late Oligocene-Early Miocene thrusting in southern East Kunlun Mountains,northern Tibetan Plateau[J].Journal of Earth Science,20(2):381-390.
Yuan Wanming, Mo Xuanxue, Wang Shicheng,et al,2003.The relationship between gold mineralization and regional tectonic evolution in the eastern Kunlun Mountains[J].Geology and Exploration,39(3):5-8.
Yuan W M, Mo X X, Zhang A K,et al,2013.Fission track thermochronology evidence for multiple periods of mineralization in the Wulonggou gold deposits,eastern Kunlun Mountains,Qinghai Province[J].Journal of Earth Science,24(4):471-478.
Zhang Aikui, Mo Xuanxue, Zhang Yong,et al,2021.Ore genesis of Kudeerte gold-polymetallic deposit in western part of East Kunlun[J].Chinese Journal of Nonferrous Metals,31(12):3762-3778.
Zhang Dequan, Dang Xingyan, She Hongquan,et al,2005.Ar-Ar dating of orogenic gold deposits in northern margin of Qaidam and East Kunlun Mountains and its geological significance[J].Mineral Deposits,24(2):87-98.
Zhang Qi, Ran hao, Li Chengdong,2012.A type granite:What is the essence?[J].Acta Petrologicate Mineralogica,31(4):621-626.
Zhang Yong, He Shuyue, Liu Zhigang,et al,2018.The mineralization period of the Wulanbaixing iron ore deposit in Qimantag:Evidence from zircon U-Pb dating of the quartz diorite in Qinghai Province[J].Geology in China,45(6):1308-1309.
Zhang Yong, Su Shengshun, Bai Shenglong,et al,2015.Geochemistry,LA-ICP-MS zircon U-Pb dating and geological significance of quartz diorite in Bielisaibei iron ore deposit,the eastern Kunlun Mountains,Qinghai Province[J].Geology in China,42(3):663-676.
Zhang Yong, Zhang Daming, Liu Guoyan,et al,2017.Zircon U-Pb dating of porphyroid monzonitic granite in the Kaerqueka copper polymetallic deposit,East Kunlun Mountains,Qinghai Province,and its geological significance[J].Geological Bulletin of China,36(2/3):270-274.
白赟,郭周平,赵辛敏,2017.北祁连浪力克地区毛藏花岗闪长岩年代学、Hf同位素及地球化学特征[J].矿床地质,36(1):158-170.
陈毓川,王登红,林文蔚,1998.中国岩金矿床成矿系列[J].矿床地质,17(增1):87-92.
高永宝,李侃,钱兵,等,2015.东昆仑卡而却卡铜矿区花岗闪长岩及其暗色微粒包体成因:锆石U-Pb年龄、岩石地球化学及Sr-Nd-Hf同位素证据[J].中国地质,42(3):646-662.
郭正府,邓晋福,许志琴,等,1998.青藏东昆仑晚古生代末—中生代中酸性火成岩与陆内造山过程[J].现代地质,12(3):51-59.
国显正,栗亚芝,贾群子,等,2018.东昆仑五龙沟金多金属矿集区晚二叠世—三叠纪岩浆岩年代学、地球化学及其构造意义[J].岩石学报,34(8):2359-2379.
侯可军,李延河,田有荣,2009.LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质,28(4):481-492.
姜春发,王宗起,李锦轶,2000.中央造山带开合构造[M].北京:地质出版社.
李金超,杜玮,成永生,等,2015.青海省东昆仑成矿带主要金矿床特征及关键控矿因素分析[J].地质与勘探,51(6):1079-1088.
李智明,薛春纪,王晓虎,等,2007.东昆仑区域成矿特征及有关找矿突破问题分析[J].地质论评,53(5):708-718.
梁改忠,杨奎锋,范宏瑞,等,2022.东昆仑阿斯哈金矿胶状黄铁矿成因及其成矿意义[J].黄金科学技术,30(1):19-33.
刘永乐,张爱奎,刘智刚,等,2022.青海东昆仑西段金矿成因类型及成矿模式[J].黄金科学技术,30(4):483-497.
罗照华,邓晋福,曹永清,等,1999.青海省东昆仑地区晚古生代—早中生代火山活动与区域构造演化[J].现代地质,13(1):51-56.
马鸿文,1992.花岗岩成因类型的判别分析[J].岩石学报,8(4):341-350.
莫宣学,罗照华,邓晋福,等,2007.东昆仑造山带花岗岩及地壳生长[J].高校地质学报,13(3):403-414.
南卡俄吾,贾群子,唐玲,等,2015.青海东昆仑哈西亚图矿区花岗闪长岩锆石U-Pb年龄与岩石地球化学特征[J].中国地质,42(3):702-712.
裴先治,李瑞保,李佐臣,等,2018.东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程[J].地球科学,43(12):4498-4520.
王秉璋,罗照华,李怀毅,等,2009.东昆仑祁漫塔格走廊域晚古生代—早中生代侵入岩岩石组合及时空格架[J].中国地质,36(4):769-782.
王成辉,徐珏,黄凡,等,2014.中国金矿资源特征及成矿规律概要[J].地质学报,88(12):2315-2325.
王松,丰成友,李世金,等,2009.青海祁漫塔格山卡尔却卡铜多金属矿区花岗闪长岩锆石SHRIMP U-Pb测年及其地质意义[J].中国地质,36(1):74-82.
吴福元,李献华,杨进辉,等,2007a.花岗岩成因研究的若干问题[J].岩石学报,23(6):1217-1238.
吴福元,李献华,郑永飞,等,2007b.Lu-Hf同位素体系及其岩石学应用[J].岩石学报,23(2):185-220.
袁万明,莫宣学,王世成,等,2003.东昆仑金成矿作用与区域构造演化的关系[J].地质与勘探,39(3):5-8.
张爱奎,莫宣学,张勇,等,2021.东昆仑西段库德尔特金多金属矿床成因探讨[J].中国有色金属学报,31(12):3762-3778.
张德全,党兴彦,佘宏全,等,2005.柴北缘—东昆仑地区造山型金矿床的Ar-Ar测年及其地质意义[J].矿床地质,24(2):87-98.
张旗,冉皞,李承东,2012.A型花岗岩的实质是什么?[J].岩石矿物学杂志,31(4):621-626.
张勇,何书跃,刘智刚,等,2018.青海祁漫塔格乌兰拜兴铁矿床形成时代:来自石英闪长岩锆石U-Pb定年证据[J].中国地质,45(6):1308-1309.
张勇,苏生顺,白生龙,等,2015.东昆仑别里赛北铁矿床石英闪长岩LA-ICP-MS锆石U-Pb测年、地球化学及其地质意义[J].中国地质,42(3):663-676.
张勇,张大明,刘国燕,等,2017.东昆仑卡而却卡铜多金属矿床似斑状二长花岗岩锆石U-Pb年龄及其地质意义[J].地质通报,36(2/3):270-274.
[1] 李博文,谷华娟,李成禄,刘宝山,杨晓平. 黑龙江省三合屯金矿床地质特征及找矿潜力分析[J]. 黄金科学技术, 2022, 30(4): 508-517.
[2] 何金霖, 李俊, 许慧玲, 曹李慧, 孙德华. 山东曹家洼金矿石头顶矿段土壤地球化学特征及找矿预测[J]. 黄金科学技术, 2022, 30(2): 179-195.
[3] 陈振, 王翠芝, 吕古贤, 张宝林, 张启鹏, 魏竣滨, 史晓鸣. 柴胡栏子金矿黄铁矿的化学成分标型特征及其矿床学意义[J]. 黄金科学技术, 2022, 30(2): 165-178.
[4] 张宇,魏俊浩,石文杰,李国猛,周新琪,毛国正,刘成林. 藏南康马县布主金(锑)矿土壤地球化学异常信息提取及成矿预测[J]. 黄金科学技术, 2022, 30(1): 1-18.
[5] 冼源宏,詹华思,李健唐. 广东怀集地区矽卡岩型铁多金属矿床同位素地球化学特征及其地质意义[J]. 黄金科学技术, 2021, 29(6): 805-816.
[6] 俞炳,邱海成,于昌明,曾庆栋,杜琴,叶杰,李建平,陈海涛. EH4音频大地电磁方法在辽东五龙金矿控矿构造及成矿预测研究中的应用[J]. 黄金科学技术, 2021, 29(5): 637-646.
[7] 马承,宋伊圩,孙彪,王占彬. 西秦岭岷礼成矿带地球化学特征及其地质意义[J]. 黄金科学技术, 2021, 29(4): 489-499.
[8] 丁书宏. 甘肃北山前红泉金矿床绢云母40Ar-39Ar年龄及其地质意义[J]. 黄金科学技术, 2021, 29(2): 173-183.
[9] 李松涛,刘建中,夏勇,谢卓君,谭亲平,王泽鹏,周光红,杨成富,蒙明华,谭礼金,汪小勇,李俊海,徐良易,王大富. 黔西南卡林型金矿聚集区构造地球化学弱矿化信息提取方法及其应用研究[J]. 黄金科学技术, 2021, 29(1): 53-63.
[10] 谢玉华,高华,张哲,杨亮,柯新星,刘晓敏,罗建镖,刘琦,许坤林,刘继顺,王智琳,孔华,刘飚. 湖南通道地区金矿床成矿流体特征及成矿物质来源:来自流体包裹体、H-O-S同位素的证据[J]. 黄金科学技术, 2021, 29(1): 74-89.
[11] 刘铭,王仔章. 青海省都兰县丘吉东沟金矿水系沉积物地球化学特征及找矿远景[J]. 黄金科学技术, 2020, 28(6): 837-845.
[12] 张斌,刘家军. 西秦岭寨上金矿床构造控矿特征与成矿规律[J]. 黄金科学技术, 2020, 28(6): 825-836.
[13] 高华, 谢玉华, 杨亮, 张哲, 柯新星, 刘晓敏, 罗建镖, 刘琦, 刘继顺, 王智琳, 孔华. 湖南通道地区金矿床中黄铁矿成分标型特征及对矿床成因的启示[J]. 黄金科学技术, 2020, 28(5): 712-726.
[14] 江思宏, 张莉莉, 刘翼飞, 李高峰, 季根源. 非洲大陆金矿分布特征与勘查建议[J]. 黄金科学技术, 2020, 28(4): 465-478.
[15] 秦运忠, 宋海军. 广西乐业县岩旦—岩堂金矿床找矿模型及成矿预测[J]. 黄金科学技术, 2020, 28(3): 317-327.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!