img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (6): 935-947.doi: 10.11872/j.issn.1005-2518.2022.06.041

• 采选技术与矿山管理 • 上一篇    

温度影响下花岗岩宏、细观力学性质演化规律

杜广盛1(),陈世江1,2(),武海龙3   

  1. 1.内蒙古科技大学矿业与煤炭学院,内蒙古 包头 014010
    2.六盘水师范学院,贵州 六盘水 553000
    3.乌拉特前旗元大商贸有限责任公司,内蒙古 巴彦淖尔 014400
  • 收稿日期:2022-03-15 修回日期:2022-09-12 出版日期:2022-12-31 发布日期:2023-01-06
  • 通讯作者: 陈世江 E-mail:313362343@qq.com;chenshijiang_2003@163.com
  • 作者简介:杜广盛(1993-),男,陕西渭南人,博士研究生,从事矿山岩石力学细观分析研究工作。313362343@qq.com
  • 基金资助:
    国家自然科学基金项目“考虑三维岩体结构面各向异性特征的剪切强度研究”(51564038);内蒙古自治区自然科学基金项目“岩石细观组构非均质定量化表征及其力学参数的评估”(2019MS05011);内蒙古自治区高等学校青年科技领军人才支持项目“煤岩裂隙界面特征及渗流力学机理的研究”(NJYT-20-A21)

Evolution of Macro and Meso Mechanical Properties of Granite Under the Influence of Temperature

Guangsheng DU1(),Shijiang CHEN1,2(),Hailong WU3   

  1. 1.College of Mining and Coal, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
    2.Liupanshui Normal University, Liupanshui 553000, Guizhou, China
    3.Urad Front Banner Yuandashangmao Com. , Ltd. , Bayannur 014400, Inner Mongolia, China
  • Received:2022-03-15 Revised:2022-09-12 Online:2022-12-31 Published:2023-01-06
  • Contact: Shijiang CHEN E-mail:313362343@qq.com;chenshijiang_2003@163.com

摘要:

在地下工程中,温度变化对岩体力学性质有着极大的影响,而宏观力学性质与细观微裂隙发育损伤密不可分。为探究在温度循环条件下岩石细观损伤机理与宏观力学性质之间的关系,对花岗岩进行不同温度下的高温水冷循环试验,并采用低场核磁系统进行细观孔隙参数检测,同时开展了单轴抗压强度试验。结果表明:(1)温度的上升和循环次数的增加均会导致花岗岩弹性模量和单轴抗压强度力学性质的降低,400 ℃是花岗岩性质变化的临界点;(2)核磁检测可以获取试件的孔隙分布参数,由该参数及试件宏观性质变化可以得出,200~600 ℃时温度循环所引起的细观损伤规律有明显差异;(3)花岗岩损伤值随着温度的升高而升高,但温度循环引起的多次损伤随温度的升高呈现出先增加后减小的趋势。微裂隙尺度、含量与试件单轴强度、应变的相关性分别为-0.943和0.935。

关键词: 温度场, 温度循环, 损伤变量, 裂隙尺度, 裂隙含量, 强度特征

Abstract:

In many underground engineering construction,the temperature change has a great impact on the macro mechanical properties of rock mass.The macro mechanical properties of the rock mass are closely related to the development and damage of micro cracks.In order to explore the relationship between meso damage mechanism and macro mechanical properties under the condition of temperature cycling,the granite was tested with different cold and heat cycles under five temperature conditions of 200,300,400,500 and 600 ℃,and then the micro pore parameters were detected by low field NMR(nuclear magnetic resonance) system.The macro uniaxial compressive strength of granite specimens under different temperature conditions was tested by universal hydraulic testing machine.Finally,through the fitting analysis of macro mechanical properties and damage parameters,as well as the correlation detection and analysis of meso parameters and macro parameters,the evolution relationship between micro pore fracture parameters and mechanical properties of granite under the condition of temperature cycle was studied.The results show that:(1)The increase of temperature and the number of cold and hot cycles will lead to the decrease of mechanical properties such as elastic modulus and uniaxial strength of granite,and the influence of cold and hot cycles on the decrease of rock strength after 400 ℃ is more obvious.(2)Nuclear magnetic testing can effectively obtain the pore distribution parameters of specimens under different temperatures.Combined with the changes of meso parameters and macro properties,it can be concluded that when the temperature is below 400 ℃,the micro cracks and damage formed in the rock are mainly caused by factors such as water overflow and internal stress concentration,while when the temperature is higher than 400 ℃,the micro cracks are mainly formed by mineral crystal creep and crystal denaturation,and at this time,a large-scale fracture group will be formed.(3)The damage value of granite increases with the increase of temperature,but the multiple damage caused by cold thermal cycle increases first and then decreases with the increase of temperature.The correlation parameter between the size of micro cracks in granite and the uniaxial compressive strength of the specimen is -0.943,and the correlation parameter between the content of micro cracks and the strain of the specimen is 0.935.

Key words: temperature field, temperature cycle, damage variables, fracture scale, fissure content, strength characteristics

中图分类号: 

  • TD315

图1

试件制备及温度作用曲线"

表1

不同工况下的温度试验设计"

循环次数

/次

温度梯度及试样编号
200 ℃300 ℃400 ℃500 ℃600 ℃
2200-2300-2400-2500-2600-2
4200-4300-4400-4500-4600-4
6200-6300-6400-6500-6600-6
8200-8300-8400-8500-8600-8
10200-10300-10400-10500-10600-10

图2

温度循环及力学性质检测设备"

图3

不同温度及循环次数条件下试件质量损失率"

图4

不同温度工况下单轴压缩试验结果"

图5

不同温度及循环次数条件下花岗岩试件单轴应力—应变曲线"

图6

不同温度和循环次数条件下花岗岩试件单轴抗压强度"

图7

模量计算数据点选取"

表2

不同温度和循环次数条件下花岗岩试件弹性模量值"

循环次数/次不同温度条件下花岗岩试件弹性模量值
200 ℃300 ℃400 ℃500 ℃600 ℃
223.5319.0413.257.553.13
421.4717.2611.886.962.11
621.4117.0910.105.331.89
820.9415.688.984.430.38
1020.4914.218.883.540.37

图8

不同温度和循环次数条件下花岗岩试件弹性模量的变化"

图9

不同温度条件下花岗岩试件孔隙率变化规律"

图10

受温度场影响的花岗岩试件T2孔隙分布情况(a)~(e)温度相同、不同循环次数条件下试件T2孔隙分布情况;(f)~(j)循环次数相同、不同温度条件下试件T2孔隙分布情况"

表3

不同温度条件和温度循环次数后花岗岩试件损伤变量值"

循环

次数/次

不同温度条件下试件损伤变量值
200 ℃300 ℃400 ℃500 ℃600 ℃
20.12070.28850.50490.71780.8830
40.19770.35500.55610.73990.9212
60.19990.36140.62260.80080.9294
80.21750.41410.66440.83450.9858
100.23430.46940.66820.86770.9859

图11

不同温度循环次数与损伤变量关系"

图12

加热温度与循环损伤参数的关系"

表4

试件力学参数和细观孔隙参数"

温度工况单轴抗压强度/MPa应变/%Td/(n/a)Tn/ms
200-2104.820.47777.50422.241
200-4109.520.537109.69830.041
200-6109.160.536144.81131.371
200-8115.060.560126.03825.261
200-10105.490.516144.81135.983
300-298.900.478191.16429.931
300-4111.620.569191.16436.240
300-688.340.488191.16433.045
300-886.540.541204.90733.829
300-1086.930.543270.49634.615
400-285.960.604289.94239.848
400-494.020.704310.78654.052
400-686.790.806382.74955.569
400-888.180.864410.26557.884
400-1074.490.791439.76055.722
500-272.690.908439.76062.122
500-472.750.954410.26573.637
500-665.251.095580.522112.459
500-856.471.114580.522135.556
500-1048.771.224622.257155.082
600-260.611.637580.522162.011
600-431.711.455666.992188.872
600-635.711.766580.522192.529
600-88.922.202880.488516.347
600-109.582.328666.992479.786
Cai Meifeng, Ji Duo, Chen Xiangsheng,et al,2021.Development strategy for co-mining of the deep mineral and geothermal resources[J].Strategic Study of CAE,23(6):43-51.
Gao Jingwei, Xi Yan, Fan Lifeng,et al,2021.Investigation on heterogeneity of microcracks distribution in thermally damaged granite[J].Journal of Experimental Mechanics,36(3):350-358.
Guo L L, Zhang Y B, Zhang Y J,et al,2018.Experimental investigation of granite properties under different temperatures and pressures and numerical analysis of damage effect in enhanced geothermal system[J].Renewable Energy:An International Journal,126:107-125.
Hu Xunjian, Bian Kang, Liu Jian,et al,2019.Discrete element simulation study on the influence of microstructure heterogeneity on the creep characteristics of granite[J].Chinese Journal of Rock Mechanics and Engineering,38(10):2069-2083.
Jia Peng, Yang Qiyao, Liu Dongqiao,et al,2021.Physical and mechanical properties and related microscopic characteristics of high-temperature granite after water-cooling[J].Rock and Soil Mechanics,42(6):1568-1578.
Li Chun,2020.Study of the Evolution of Granite’s Physical and Mechanical Properties Under Heating and Cooling Alternating[D].Taiyuan:Taiyuan University of Technology.
Luo Shengyin, Dou Bin, Tian Hong,et al,2020.Comparative experimental study on physical and mechanical properties of granite after natural cooling and real-time high temperature[J].Earth Science Frontiers,27(1):178-183.
Miao Shengjun, Liu Zejing, Zhao Xingguang,et al,2021.Energy dissipation and damage characteristics of Beishan granite under cyclic loading and unloading[J].Chinese Journal of Rock Mechanics and Engineering,40(11):928-937.
Min Ming, Zhang Qiang, Jiang Binsong,et al,2020.Splitting tests and acoustic emission characteristics of Beishan granite under real-time high temperature[J].Journal of Yangtze River Scientific Research Institute,37(3):108-113.
Ni Xiaohui, Li Xiaojuan, Zhu Zhende,2011.Quantitative test on meso-damage characteristics of marble after different temperatures[J].Journal of China Coal Society,36(2):248-254.
Shao S S, Wasantha P L P, Ranjith P G,et al,2014.Effect of cooling rate on the mechanical behavior of heated Strathbogie granite with different grain sizes[J].International Journal of Rock Mechanics and Mining Sciences,70:381-387.
Tao Ming, Wang Jun, Li Zhanwen,et al,2019.Meso- and micro-experimental research on the fracture of granite spallation under impact loads[J].Chinese Journal of Rock Mechanics and Engineering,38(11):2172-2181.
Tian W L, Yang S Q, Huang Y H,2018.Macro and micro mechanics behavior of granite after heat treatment by cluster model in particle flow code[J].Acta Mechanica Sinica,34(1):175-186.
Wan Zhijun, Zhao Yangsheng, Dong Fuke,et al,2008.Experimental study on mechanical properties of granite under high temperature and triaxial stress[J].Chinese Journal of Rock Mechanics and Engineering,(1):72-77.
Wang Chuanle, Du Guangyin, Li Erbing,et al,2021.Evolution of strength parameters and energy dissipation of Beishan deep granite under conventional triaxial compression[J].Chinese Journal of Rock Mechanics and Engineering,40(11):2238-2247.
Xi Baoping, Wu Yangchun, Wang Shuai,et al,2020.Experimental study on mechanical properties of granite taken from Gonghe basin,Qinghai Province after high temperature thermal damage[J].Chinese Journal of Rock Mechanics and Engineering,39(1):69-83.
Xia Kaiwen, Wang Shuai, Xu Ying,et al,2021.Advances in experimental studies for deep rock dynamics[J].Chinese Jou-rnal of Rock Mechanics and Engineering,40(3):448-475.
Xu Tianfu, Yuan Yilong, Jiang Zhenjiao,et al,2016.Hot dry rock and enhanced geothermal engineering:International experience and China prospect[J].Journal of Jilin University(Earth Science Edition),46(4):1139-1152.
Xu Xiaoli, Gao Feng, Zhang Zhizhen,2014.Research on triaxial compression test of granite after high temperatures[J].Rock and Soil Mechanics,35(11):3177-3183.
Xu Xiaoli, Gao Feng, Zhang Zhizhen,2015.Experimental study of the effect of loading rates on mechanical properties of granite at real-time high temperature[J].Rock and Soil Mechanics,36(8):2184-2192.
Yang S Q, Ranjith P G, Jing H W,et al,2017.An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments[J].Geothermics,65:180-197.
Yin T B, Shu R H, Li X B,et al,2016.Comparison of mechanical properties in high temperature and thermal treatment granite[J].Transactions of Nonferrous Metals Society of China,26(7),1926-1937.
Yu Li, Peng Haiwang, Li Guowei,et al,2021.Experimental study on granite under high temperature-water cooling cycle[J].Rock and Soil Mechanics,42(4):1025-1035.
Zhang Hongwei, Wan Zhijun, Zhou Changbing,et al,2021.High temperature mechanical properties and thermal shock effect of hot dry rock[J].Journal of Mining & Safety Engineering,38(1):138-145.
Zhang Sen, Shu Biao, Liang Ming,et al,2022.Quantification and mechanism analysis of meso-damage of high-temperature granite under different cooling modes[J].Coal Geology & Exploration,50(2):106-114.
Zhang Xianguo, Zhang Tao, Liu Yucong,et al,2020.Quantitative interpretation of pore throat parameters in deep low permeability tight gas reservoir by NMR logging[J].Journal of China University of Mining and Technology,49(5):941-950.
Zuo J P, Wang J T, Sun Y J,et al,2017.Effects of thermal treatment on fracture characteristics of granite from Beishan,a possible high-level radioactive waste disposal site in China[J].Engineering Fracture Mechanics,182:425-437.
蔡美峰,多吉,陈湘生,等,2021.深部矿产和地热资源共采战略研究[J].中国工程科学,23(6):43-51.
高经纬,席岩,范立峰,等,2021.热损伤花岗岩内细观裂隙分布非均匀性的研究[J].实验力学,36(3):350-358.
胡训健,卞康,刘建,等,2019.细观结构的非均质性对花岗岩蠕变特性影响的离散元模拟研究[J].岩石力学与工程学报,38(10):2069-2083.
贾蓬,杨其要,刘冬桥,等,2021.高温花岗岩水冷却后物理力学特性及微观破裂特征[J].岩土力学,42(6):1568-1578.
李春,2020.冷热交替作用下花岗岩物理力学特性演化规律研究[D].太原:太原理工大学.
罗生银,窦斌,田红,等,2020.自然冷却后与实时高温下花岗岩物理力学性质对比试验研究[J].地学前缘,27(1):178-183.
苗胜军,刘泽京,赵星光,等,2021.循环载荷下北山花岗岩能量耗散与损伤特征[J].岩石力学与工程学报,40(11):928-937.
闵明,张强,蒋斌松,等,2020.实时高温下北山花岗岩劈裂试验及声发射特性[J].长江科学院院报,37(3):108-113.
倪骁慧,李晓娟,朱珍德,2011.不同温度循环作用后大理岩细观损伤特征的定量研究[J].煤炭学报,36(2):248-254.
陶明,汪军,李占文,等,2019.冲击荷载下花岗岩层裂断口细—微观试验研究[J].岩石力学与工程学报,38(11):2172-2181.
万志军,赵阳升,董付科,等,2008.高温及三轴应力下花岗岩体力学特性的实验研究[J].岩石力学与工程学报,(1):72-77.
王传乐,杜广印,李二兵,等,2021.北山深部花岗岩常规三轴压缩条件下的强度参数及能量耗散[J].岩石力学与工程学报,40(11):2238-2247.
郤保平,吴阳春,王帅,等,2020.青海共和盆地花岗岩高温热损伤力学特性试验研究[J].岩石力学与工程学报,39(1):69-83.
夏开文,王帅,徐颖,等,2021.深部岩石动力学实验研究进展[J].岩石力学与工程学报,40(3):448-475.
徐小丽,高峰,张志镇,2014.高温作用后花岗岩三轴压缩试验研究[J].岩土力学,35(11):3177-3183.
徐小丽,高峰,张志镇,等,2015.实时高温下加载速率对花岗岩力学特性影响的试验研究[J].岩土力学,36(8):2184-2192.
许天福,袁益龙,姜振蛟,等,2016.干热岩资源和增强型地热工程:国际经验和我国展望[J].吉林大学学报(地球科学版),46(4):1139-1152.
余莉,彭海旺,李国伟,等,2021.花岗岩高温—水冷循环作用下的试验研究[J].岩土力学,42(4):1025-1035.
张洪伟,万志军,周长冰,等,2021.干热岩高温力学特性及热冲击效应分析[J].采矿与安全工程学报,38(1):138-145.
张森,舒彪,梁铭,等,2022.不同冷却方式下高温花岗岩细观损伤量化和机理分析[J].煤田地质与勘探,50(2):106-114.
张宪国,张涛,刘玉从,等,2020.深层低渗—致密气层孔喉参数核磁共振测井定量解释[J].中国矿业大学学报,49(5):941-950.
[1] 聂兴信,刘哲伟,高赵祥,程平. 高温金属矿井巷道掘进中组合压冷风筒布位对降温效果的影响[J]. 黄金科学技术, 2022, 30(1): 85-92.
[2] 靳少博,刘科伟,黄进,靳绍虎. 单轴压缩下充填体损伤本构模型研究[J]. 黄金科学技术, 2021, 29(4): 555-563.
[3] 毛思羽, 曹平, 李建雄, 欧传景. 基于核磁共振T2谱图的裂隙砂岩疲劳损伤分析[J]. 黄金科学技术, 2020, 28(3): 430-441.
[4] 黄锐,吴娥,吴林. 海拔高度对矿井巷道火灾烟气蔓延规律的影响研究[J]. 黄金科学技术, 2020, 28(2): 293-300.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!