img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (5): 676-690.doi: 10.11872/j.issn.1005-2518.2022.05.188

• 矿产勘查与资源评价 • 上一篇    下一篇

湘东北万古金矿床不同期次黄铁矿微量元素特征及其对金成矿机制的启示

万泰安1,2(),许德如1,2,3(),马文1,2,张胜伟1,2,王国建1,2,卞玉冰1,2,李博1,2   

  1. 1.东华理工大学核资源与环境国家重点实验室,江西 南昌 330013
    2.东华理工大学地球科学学院,江西 南昌 330013
    3.东华理工大学江西省放射性地学大数据技术工程实验室,江西 南昌 330013
  • 收稿日期:2021-11-30 修回日期:2022-01-20 出版日期:2022-10-31 发布日期:2022-12-10
  • 通讯作者: 许德如 E-mail:wantaian@foxmail.com;xuderu@gig.ac.cn
  • 作者简介:万泰安(1992-),男,江西泰和人,硕士研究生,从事金矿勘查研究工作。wantaian@foxmail.com
  • 基金资助:
    国家自然科学基金项目“江南造山带万古金矿床成矿流体活动的精细研究”(42002090);“江南古陆金(多金属)大规模成矿的机理研究”(41930428)

Trace Element Characteristics of Different Chronology Pyrite in Wangu Gold Deposit,Northeast Hunan and Its Implication to Gold Mineralization Mechanism

Tai’an WAN1,2(),Deru XU1,2,3(),Wen MA1,2,Shengwei ZHANG1,2,Guojian WANG1,2,Yubing BIAN1,2,Bo LI1,2   

  1. 1.State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
    2.School of Earth Sciences, East China University of Technology, Nanchang 330013, Jiangxi, China
    3.Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology, East China University of Technology, Nanchang 330013, Jiangxi, China
  • Received:2021-11-30 Revised:2022-01-20 Online:2022-10-31 Published:2022-12-10
  • Contact: Deru XU E-mail:wantaian@foxmail.com;xuderu@gig.ac.cn

摘要:

万古金矿是江南造山带中金(多金属)成矿带的代表性矿床,目前对该矿床硫化物中的元素特征和金的富集机制研究相对较少。为了进一步探讨万古金矿中硫化物的微量元素特征,依据黄铁矿晶型及其他共生矿物特征,将其中的黄铁矿划分为3期(Py1、Py2和Py3),并对3期黄铁矿分别进行LA-ICP-MS分析。研究表明:Py1平行于地层层理,为不含金的原生黄铁矿;Py2与菱铁矿共生,是富CO2流体与围岩发生水岩反应所致,且对Py1具有继承性;Py3与烟灰色石英和毒砂共生,金含量较高。Py2表面孔隙发育,表明该期黄铁矿通过溶解—沉淀形成Py3。富金的Py3存在Au-As耦合现象,Au浓度明显低于金饱和曲线,推测Au以Au1+的形式赋于黄铁矿的晶格中。结合以往研究,推断硫化作用是万古金矿主要的金沉淀机制,富含Py2与菱铁矿的围岩是金沉淀理想的化学圈闭。

关键词: 黄铁矿, 江南造山带, 万古金矿, Au-As耦合, LA-ICP-MS, Mapping

Abstract:

The Wangu gold deposit is one of the most important parts of the gold (polymetallic) metallogenic belt in the Jiangnan orogenic belt,in which the mineral element composition characteristics of sulfide has relatively few research on the enrichment mechanism of Au.For further exploration of the element composition characteristics of sulfide in Wangu gold deposit,85 representative samples were selected and made into thin sections.The ore mineral pyrite and arsenipyrite in the deposit was taken as the research object,and the basic characteristics of mineral assemblage and mineral structure were observed under the microscope.According to the characteristics of pyrite crystal form and other symbiotic minerals,the pyrite in Wangu gold mine is divided into three stages:Py1,Py2 and Py3.Laser ablation plasma mass spectrometry (LA-ICP-MS) and mapping was used to analyze the trace element composition in these three stages.There are obvious differences in Au con-centrations in Py1,Py2 and Py3 of pyrite in Wangu gold deposit.Au elements mainly exists in Py3 in the metallogenic stage,while Au concentration in Py2 is low.At the same time,As elements in Py3 also appear in the position corresponding to the enrichment of Au elements.There is a coupling relationship between Au and As in pyrite of Wangu gold deposit.Therefore,speculation is made that Au mainly migrates in the form of Au-HS in the fluid and is mainly assigned to the lattice of pyrite in the form of Au1+.In this process,As is likely to replace S with As1- and form Fe(As,S)2 solid solution between pyrite and arsenopyrite,which is arsenic containing pyrite.Combined with the previous study,the result is that Py1 does not contain gold and is primary pyrite,and Py2 exists symbiotically with siderite.It is considered that siderite was formed before mineralization and was caused by water-rock reaction between Caledonian CO2 rich fluid and surrounding rock.Therefore,Py2 has a certain inheritance to Py1.As the main gold mineralizeation stage of Caledonian period,Py3 exists with smoky gray quartz and arsenipyrite,and has a high percentage of sulfide in gold.The growth of pores on the surface of Py2 is the typical dissolution reprecipitation feature,indicating that pyrite in this period was dissolved by later fluid and reprecipitation into Py3.In this process,the Yanshanian gold bearing fluid reacts with early Py2,which destroys the stability of Au-HS complex in the fluid and forms gold bearing Py3 through pyrite dissolution and reprecipitation.Combined with previous studies,it is considered that sulfidation is the main gold precipitation mechanism of Wangu gold deposit,and early Py2 and siderite can also provide ideal chemical traps for gold precipitation.

Key words: pyrite, Jiangnan orogenic belt, Wangu gold deposit, Au-As coupling, LA-ICP-MS, Mapping

中图分类号: 

  • P618.51

图1

湘东北地区区域地质图(据Deng et al.,2020修改)1.第四系;2.白垩—古近纪砂岩、砾岩和杂砂岩;3.中泥盆—中三叠世碳酸盐岩、砂岩和泥岩;4.震旦—志留纪砂岩、页岩、砾岩和板岩;5.新元古代板溪群碎屑沉积岩;6.新元古代冷家溪群浅变质浊积岩;7.新太古代—古元古代(?)连云山岩群和涧溪冲岩群角闪岩相—麻粒岩相变质岩;8.燕山期花岗岩;9.印支期花岗岩;10.加里东期花岗岩;11.新元古代花岗岩;12.断层;13.金矿床或矿化点;14.韧性剪切带;15.Co矿床;16.Cu-Pb-Zn-Au矿床;A-汨罗断陷盆地;B-幕阜山—望湘断隆;C-长沙—平江断陷盆地;D-连云山—衡阳断隆;E-醴陵—攸县断陷盆地"

图2

湘东北地区地质图(据毛景文等,1997修改)1.全新统;2.更新统;3.白垩纪戴家坪组;4.白垩纪东塘组;5.新元古代坪原组;6.新元古代黄浒洞组;7.新元古代小木坪组;8.燕山期花岗岩;9.金矿体和金矿化点;10.河流;11.取样点;12.断层"

图3

万古金矿地质图(据毛景文等,1997修改)1.第四系;2.白垩纪戴家坪组;3.新元古代坪原组第三段第二岩性亚段;4.新元古代坪原组第三段第一岩性亚段;5.新元古代坪原组第二段第二岩性亚段;6.新元古代坪原组第二段第一岩性亚段;7.新元古代坪原组第一段;8.矿体及编号;9.断裂及编号"

图4

万古金矿矿区剖面图(据毛景文等,1997修改)1.新元古代坪原组第二段第二岩性亚段;2.新元古代坪原组第二段第一岩性亚段;3.含金石英脉;4.金品位/厚度;5.层内断裂带;6.钻孔;7.产状"

图5

万古金矿不同岩石类型野外记录、手标本及黄铁矿镜下特征(反射光g、h、j,背散射图像i)(a)石英脉型矿石,蚀变板岩与石英脉互层;(b)蚀变岩型矿石,石英穿插其中;(c)角砾岩型矿石,石英呈浸染状;(d)石英脉型矿石中可见石英、方解石、毒砂和黄铁矿(Py3);(e)碳质板岩中含有黄铁矿(Py1),出现褪色化蚀变;(f)蚀变板岩被石英穿插,蚀变板岩中可见毒砂和黄铁矿(Py3);(g)黄铁矿(Py2)呈他形,与菱铁矿共生;(h)黄铁矿中的Py1和Py2阶段,呈自形—半自形,Py1为核部表面光滑,Py2为幔部呈多孔结构;(i)BES图像下与黄铁矿Py3共生的毒砂,环带发育较好,未见多期次的毒砂;(j)黄铁矿中的Py2和Py3阶段,呈自形,Py2为核部呈多孔结构,Py3为幔部表面光滑;Sd-菱铁矿;Apy-毒砂;Py-黄铁矿;Cc-方解石"

表1

万古金矿床黄铁矿LA-ICP-MS微量元素特征"

形成时期测点号AuAsSeMnCoNiCuZnMoAgSbTePbBiCo/Ni
Py120ZK6S01-4J-10.101 24424.78152.953037441.84-0.58139.13.416972.751.42
20ZK6S01-4J-20.2075231.8834.518829590.64-1.01277.42.111 3092.250.64
20ZK6S01-4J-30.141 04531.9286.978440457.13-0.66183.53.259573.211.94
20ZK6S01-4J-40.1185824.15778.715438648.44-0.73159.72.738624.780.40
20ZK6S01-4T-10.222534.78234.71301494.719-1.58378.2-1 7351.639.36
Py220ZK6S01-4J-50.1859018.3671.455989068.92-1.32187.32.9095110.640.63
20ZK6S01-4J-60.3481726.6720.5350375115.56-1.83388.33.911 3703.680.93
20ZK6S01-4J-70.263 74318.6342.35781 85895.4100.251.82355.04.201 1124.840.31
20ZK6S01-4J-80.241 31227.8346.949824867.812-1.05198.03.158796.342.01
20ZK6S01-4J-91.022 72051.36529.3566818174.3322.285.07393.87.491 20513.390.69
20ZK6S01-4J-101.185 78249.7325.87261 618365.497.466.52361.914.611 05117.120.45
20ZK6S01-4T-80.341 03814.9442.3347743113.3100.411.88335.84.461 0667.130.47
20ZK6S01-4T-90.613 01526.9035.94 120991174.011-1.55493.07.521 17310.184.16

Py3

20HJW-2J-112.0338 2585.001.37850863.34-0.0821.22.526321.400.15
20HJW-2J-218.0831 83610.281.05722768.130.530.0951.36.335295.550.25
20HJW-2J-330.9041 6725.81-26176102.37-0.0647.56.882094.260.15
20HJW-2J-411.7931 1377.970.86225555.13-0.0525.64.19773.170.24
20HJW-2J-563.9042 0079.841.59161567.82-0.0723.36.11792.610.15
20HJW-2J-613.8124 98811.731.327928055.520.150.0423.32.381182.800.99
20HJW-2J-74.677 98120.477.814224148.03 0530.201.3446.27.883 03110.170.59
20HJW-2J-858.5749 6309.14-2714552.52--13.62.66441.270.19
20HJW-2J-911.5324 85711.250.74820943.32--19.61.986942.170.23
20HJW-2J-101.812 54514.644.545917378.16-0.27162.94.7455213.832.65
检出限0.032.073.330.40.650.370.350.50.10.010.240.450.0020.02

表2

万古金矿床毒砂LA-ICP-MS微量元素特征"

测点号SMnFeCoNiCuZnAsSeMoAgCdInSnSbTeAuTlPbBiCo/Ni
G-1-3342 7821.20342 016.8165.51207.243.27-771 41428.410.1640.270.840.5660.384726.358.420.01321.565.330.316
G-1-6311 2011.49342 016.8436.17110.506.00-767 41836.360.2530.340.580.5180.521232.8274.990.0191.630.330.327
G-1-7232 4531.41342 016.811.4327.963.85-791 26133.150.2530.300.480.4880.403 0103.998.420.01912.948.020.051
G-1-9370 8571.59342 016.843.1035.2211.30-815 33449.330.2090.640.410.4850.484663.7627.830.03919.775.810.088
G-1-10317 1071.55342 016.882.6223.526.64-776 21834.840.2600.350.560.5721.565792.7813.450.01419.744.330.111
G-1-13343 6466.26342 016.8828.7932.1611.00-738 72268.080.7200.360.470.5070.492072.8196.840.03325.764.680.895
G-1-14397 8231.54342 016.841.5423.174.22-806 93845.730.2500.390.510.6620.461143.0347.490.03011.922.030.066
G-1-15289 7352.03342 016.8493.37178.654.57-699 27135.460.2150.350.470.5700.521523.8088.380.0187.322.090.523
G-4-6338 0402.44342 016.84434.85687.526.30-727 24547.100.3500.500.820.5810.737474.6528.370.02928.535.070.632
G-4-7255 5861.67342 016.8449.41176.7810.40-645 21233.830.3000.370.500.4400.471912.9862.540.01517.113.670.279

图6

样品20ZK6S01-4J中的黄铁矿LA-ICP-MS面扫描图像"

图7

样品20HJW-2J中的黄铁矿LA-ICP-MS面扫描图像"

图8

万古金矿20ZK6S01-4J和20HJW-2J中黄铁矿及毒砂的LA-ICP-MS分析"

Bai Daoyuan, Jia Baohua, Zhong Xiang,et al,2012.Potential genesis of the trending changes of Jinning period and Caledonian structural lineamens in middle-southern Hunan[J].Journal of Geomechanics,18(2):165-177.
Bell R M, Kolb J, Waight T E,et al,2017.A Palaeoproterozoic multi-stage hydrothermal alteration system at Nalunaq gold deposit,South Greenland[J].Mineralium Deposita,52(3):383-404.
Buchholz P, Oberthur T, Luders V,et al,2007.Multistage Au-As-Sb mineralization and crustal-scale fluid evolution in the Kwekwe District,Midlands Greenstone Belt,Zimbabwe:A combined geochemical,mineralogical,stable isotope,and fluid inclusion study[J].Economic Geology,102(3):347-378.
Cawood P A, Zhao G C, Yao J L,et al,2018.Reconstructing south China in Phanerozoic and Precambrian supercontinents[J].Earth Science Reviews,186:173-194.
Cline J S, Hofstra A H, Muntean J L,et al,2005.Carlin-Type Gold Deposits in NevadaCritical Geologic Characteristics and Viable Models[M].Littleton:Society of Econornic Geologists,Economic Geology 100th Anniversary Volume,451-484.
Cook N J, Ciobanu C L, Mao J,2009. Textural control on gold distribution in As-free pyrite from the Dongping,Huangtuliang and Hougou gold deposits,North China Craton (Hebei Province,China)[J].Chemical Geology,264(1/2/3/4):101-121.
Cook N J, Ciobanu C L, Meria D,et al,2013.Arsenopyrite-pyrite association in an orogenic gold ore:Tracing mineralization history from textures and trace elements[J].Economic Geology,108(6):1273-1283.
Deditius A P, Utsunomiya S, Renock D,et al,2008.A proposed new type of arsenian pyrite:Composition,nanostructure and geological significance[J].Geochimica et Cosmochimica Acta,72(12):2919-2933.
Deng J, Wang Q, Li G,2017.Tectonic evolution,superimposed orogeny,and composite metallogenic system in China[J].Gondwana Research,50:216-266.
Deng T, Xu D, Chi G,et al,2020.Caledonian(Early Paleozoic) veins overprinted by Yanshanian (Late Mesozoic) gold mineralization in the Jiangnan Orogen:A case study on gold deposits in northeastern Hunan,South China[J].Ore Geology Reviews,124:103586.
Fougerouse D, Micklethwaite S, Tomkins A G,et al,2016.Gold remobilisation and formation of high grade ore shoots driven by dissolution-reprecipitation replacement and Ni substitution into auriferous arsenopyrite[J].Geochimica et Cosmochimica Acta,178:143-159.
Frimmel H E, Groves D I, Kirk J,et al,2005.The Formation and Preservation of the Witwatersrand Goldfields,the World’s Largest Gold Province[M].Littleton:Society of Econornic Geologists,Economic Geology 100th Anniversary Volume,769-797.
Fu Gonggu, Xu Deru, Chen Guanghao,et al,2002.New recognition on geological characteristics of gold ore deposits in northeastern Hunan Province,China and new prospecting advances[J].Geotectonica et Metallogenia,26(4):7.
Griffin W L, Powell W J, Pearson N J,et al,2008.GLITTER:Data reduction software for laser ablation ICP-MS[C]//Sylvester P,ed.Laser Ablation-ICP-MS in the Earth Sciences:Current Practices and Outstanding Issues.Ottawa:Mineralogical Association of Canada.
Groves D I, Goldfarb R J, Gebre-Mariam M,et al,1998.Orogenic gold deposits:A proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J].Ore Geology Reviews,13(1/2/3/4/5):7-27.
Haroldson E L, Brown P E, Bodnar R J,2018.Involvement of variably-sourced fluids during the formation and later overprinting of Paleoproterozoic Au-Cu mineralization:Insights gained from a fluid inclusion assemblage approach[J].Chemical Geology,497:115-127.
Hastie E C G, Schindler M, Kontak D J,et al,2021.Transport and coarsening of gold nanoparticles in an orogenic deposit by dissolution-reprecipitation and ostwald ripening[J].Communications Earth and Environment,2(1):57.
Hu Z, Zhang W, Liu Y,et al,2015.“ Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis:Application to lead isotope analysis[J].Analytical Chemistry,87(2):1152-1157.
Li W, Cook N J, Xie G Q,et al,2019.Textures and trace element signatures of pyrite and arsenopyrite from the Gutaishan Au-Sb deposit,south China[J].Mineralium Deposita,54(4):591-610.
Li W, Cook N J, Xie G Q,et al,2021.Complementary textural,trace element,and isotopic analyses of sulfides constrain ore-forming processes for the slate-hosted Yuhengtang Au deposit,south China[J].Economic Geology,116(8):1825-1848.
Li Z X, Li X H,2007.Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic south China:A flat-slab subduction model[J].Geology,35(2):179.
Liang R, Chi G, Ashton K,et al,2017.Fluid compositions and P-T conditions of vein-type uranium mineralization in the Beaverlodge uranium district,northern Saskatchewan,Canada[J].Ore Geology Reviews,80:460-483.
Liu Q, Shao Y, Chen M,et al,2019.Insights into the genesis of orogenic gold deposits from the Zhengchong gold field,Northeastern Hunan Province,China[J].Ore Geology Reviews,105:337-355.
Ma W, Deng T, Xu D,et al,2021.Geological and geochemical characteristics of hydrothermal alteration in the Wangu deposit in the central Jiangnan orogenic belt and implications for gold mineralization[J].Ore Geology Reviews,139:104479.
Mao Jingwen, Li Hongyan,1997.Research on genesis of the gold deposits in the Jiangnan terrain[J].Geochimica,26(5):11.
Meffre S, Large R R, Steadman J A,et al,2016.Multi-stage enrichment processes for large gold-bearing ore deposits[J].Ore Geology Reviews,76:268-279.
Reich M, Kesler S E, Utsunomiya S,et al,2005.Solubility of gold in arsenian pyrite[J].Geochimica et Cosmochimica Acta,69(11):2781-2796.
Rudnick R, Shan G,1968.Composition of the continental crust[J].Origin and Distribution of the Elements,3:549-557.
Shu Liangshu,2012.An analysis of principal features of tectonic evolution in South China Block[J].Geological Bulletin of China,31(7):19.
Shu Liangshu, Wang Dezi,2006.A comparision study of basin and range tectonics in the Western North America and Southeastern China[J].Geological Journal of China Universities,12(1):1-13.
Wang Jian,2010.Characteristics of Compounding-combine Fold Superposition and Dynamics of the Xuefengshan Tectonic System[D].Qingdao:Ocean University of China.
Wen Zhilin, Deng Teng, Dong Guojun,et al,2016.Characteristcs of ore-controlling structures of Wangu gold deposit in Northeastern Hunan Province[J].Geotectonica et Metallogenia,40(2):14.
Wu Y F, Evans K, Li J W,et al,2019a.Metal remobilization and ore-fluid perturbation during episodic replacement of auriferous pyrite from an epizonal orogenic gold deposit[J].Geochimica et Cosmochimica Acta,245:98-117.
Wu Y F, Fougerouse D, Evans K,et al,2019b.Gold,arsenic,and copper zoning in pyrite:A record of fluid chemistry and growth kinetics[J].Geology,47(7):641-644.
Xiao Yongjun, Chen Guanghao,2004.Preliminary study on the tectono-metallogenic orientation mechanism of the Dadong-Wangu gold deposits zone,Northeast Hunan Province[J].Geotectonica et Metallogenia,28(1):38-44.
Xu D R, Chi G X, Zhang Y H,et al,2017a.Yanshanian (Late Mesozoic) ore deposits in China—An introduction to the special issue[J].Ore Geology Reviews,88:481-490.
Xu D, Deng T, Chi G,et al,2017b.Gold mineralization in the Jiangnan orogenic belt of South China:Geological,geochemical and geochronological characteristics,ore deposit-type and geodynamic setting[J].Ore Geology Reviews,88:565-618.
Xu Deru, Dong Guojun, Deng Teng,et al,2015.Large-scale gold mineralization and geodynamic background in Northeast Hunan[J].Acta Mineralogica Sinica,(Supp.1):1.
Xu W G, Fan H R, Yang K F,et al,2016.Exhaustive gold mineralizing processes of the Sanshandao gold deposit,Jiaodong Peninsula,Eastern China:Displayed by hydrothermal alteration modeling[J].Journal of Asian Earth Sciences,129:152-169.
Zhang L, Groves D I, Yang L Q,et al,2020.Utilization of pre-existing competent and barren quartz veins as hosts to later orogenic gold ores at Huangjindong gold deposit,Jiangnan Orogen,Southern China[J].Mineralium Deposita,55(2):363-380.
Zhang Ting, Peng Jiantang,2017.Wallrock alteration and its relation with gold mineralization in the Herenping albite-quartz lode gold deposit in Western Human[J].Journal of Earth Sciences and Environment,36(4):32-44.
Zhou X, Sun T, Shen W,et al,2006.Petrogenesis of Mesozoic granitoids and volcanic rocks in south China:A response to tectonic evolution[J].Geological Curtain:English Version,29(1):26-33.
Zhou Y, Xu D, Dong G,et al,2021.The role of structural reactivation for gold mineralization in Northeastern Hunan Province,South China[J].Journal of Structural Geology,145:104306.
柏道远,贾宝华,钟响,等,2012.湘中南晋宁期和加里东期构造线走向变化成因[J].地质力学学报,18(2):165-177.
符巩固,许德如,陈广浩,等,2002.湘东北地区金成矿地质特征及找矿新进展[J].大地构造与成矿学,26(4):7.
毛景文,李红艳,1997.江南古陆某些金矿床成因讨论[J].地球化学,26(5):11.
舒良树,2012.华南构造演化的基本特征[J].地质通报,31(7):19.
舒良树,王德滋,2006.北美西部与中国东南部盆岭构造对比研究[J].高校地质学报,12(1):1-13.
王建,2010.雪峰山构造系统褶皱复合—联合叠加样式及动力机制[D].青岛:中国海洋大学.
文志林,邓腾,董国军,等,2016.湘东北万古金矿床控矿构造特征与控矿规律研究[J].大地构造与成矿学,40(2):14.
肖拥军,陈广浩,2004.湘东北大洞—万古地区金矿构造成矿定位机制的初步研究[J].大地构造与成矿学,28(1):38-44.
许德如,董国军,邓腾,等,2015.湘东北地区大规模金成矿作用及地球动力学背景[J].矿物学报,(增1):1.
张婷,彭建堂,2014.湘西合仁坪钠长石石英脉型金矿床围岩蚀变及质量平衡[J].地球科学与环境学报,36(4):32-44.
[1] 张胜伟,邓腾,许德如,周岳强,董国军,李增华,马文,许可,海颜. 万古金矿中碳质物的成因及其与金成矿的关系[J]. 黄金科学技术, 2022, 30(6): 835-847.
[2] 陈海龙,徐质彬,杨晓弘,杨海燕,吴圣刚,郑伯仁,高磊,陈俊辉. 烃汞叠加晕法在湖南万古金矿区及其外围深部找矿中的应用[J]. 黄金科学技术, 2022, 30(3): 366-381.
[3] 陈振, 王翠芝, 吕古贤, 张宝林, 张启鹏, 魏竣滨, 史晓鸣. 柴胡栏子金矿黄铁矿的化学成分标型特征及其矿床学意义[J]. 黄金科学技术, 2022, 30(2): 165-178.
[4] 许可, 许德如. 江南造山带黄金洞金矿蚀变岩型金矿化形成机制研究[J]. 黄金科学技术, 2022, 30(2): 151-164.
[5] 梁改忠,杨奎锋,范宏瑞,李兴辉. 东昆仑阿斯哈金矿胶状黄铁矿成因及其成矿意义[J]. 黄金科学技术, 2022, 30(1): 19-33.
[6] 王智琳,伍杨,许德如,邹少浩,董国军,彭尔柯,宁钧陶,康博. 湘东北长沙—平江断裂带关键金属钴的赋存状态与成矿规律[J]. 黄金科学技术, 2020, 28(6): 779-785.
[7] 温佳伟,史鹏亮,刘彦兵,张静,屈海浪,李元申,胡博心,缪广. 辽宁二道沟金矿床黄铁矿热电性特征及深部找矿预测[J]. 黄金科学技术, 2020, 28(6): 812-824.
[8] 高华, 谢玉华, 杨亮, 张哲, 柯新星, 刘晓敏, 罗建镖, 刘琦, 刘继顺, 王智琳, 孔华. 湖南通道地区金矿床中黄铁矿成分标型特征及对矿床成因的启示[J]. 黄金科学技术, 2020, 28(5): 712-726.
[9] 陈港, 陈懋弘, 马克忠, 葛锐, 郭申祥, 吴启强, 原其生. 广西贵港六梅金矿的成因类型及找矿意义[J]. 黄金科学技术, 2020, 28(4): 479-496.
[10] 张振, 宁生元, 徐增田. 胶东玲珑九曲金矿床载金黄铁矿矿物学特征及其深部找矿意义[J]. 黄金科学技术, 2020, 28(3): 328-336.
[11] 陈玉民, 张华锋, 张聪颖, 胡换龙, 王昭坤, 曾庆栋, 范宏瑞. 黄铁矿标型特征对胶东三山岛金矿深部矿化的启示[J]. 黄金科学技术, 2019, 27(5): 637-647.
[12] 郭剑衡, 冷成彪, 张兴春, 张伟, 尹崇军, 张陆佳, 田振东. 滇西北烂泥塘斑岩铜金矿床铁氧化物LA-ICP-MS微量元素特征及其地质意义[J]. 黄金科学技术, 2019, 27(5): 659-677.
[13] 罗清威,王保国,义爱文,张克川,潘泽,张盛亚. 坦桑尼亚某绿岩带型金矿床中黄铁矿的标型特征及意义[J]. 黄金科学技术, 2019, 27(1): 15-24.
[14] 位鸥祥, 张达玉, 刘劲松, 陈雪锋, 叶龙翔, 蒋华, 钱祥, 周涛发. 江南古陆西北部塔下岩体年代学及成因研究[J]. 黄金科学技术, 2018, 26(6): 689-705.
[15] 张蕾蕾, 张静, 王琦崧, 陈良, 陈叙安. 熊耳山地区槐树坪金矿床黄铁矿特征及其地质意义[J]. 黄金科学技术, 2018, 26(4): 481-491.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 宋贺民, 冯喜利, 丁宪华. 太行山北段交界口矿区地质地球化学特征及找矿方向[J]. J4, 2010, 18(3): 54 -58 .
[2] 胡琴霞, 李建忠, 喻光明, 谢艳芳, 张圣潇. 白龙江成矿带金矿点初探[J]. J4, 2010, 18(3): 51 -53 .
[3] 陈学俊. 青海直亥买休玛金矿床矿体特征与找矿前景分析[J]. J4, 2010, 18(4): 50 -53 .
[4] 崔廷军, 逯克思, 庄勇, 傅星. 青海省柴达木盆地南缘金成矿带特征及成矿规律浅析[J]. J4, 2010, 18(3): 63 -67 .
[5] 杨明荣, 牟长贤. 原子荧光法测定化探样品中砷和锑的不确定度评定[J]. J4, 2010, 18(3): 68 -71 .
[6] 苏建华, 陆树林. 从高酸低浓度尾液中萃取金的试验[J]. J4, 2010, 18(3): 72 -75 .
[7] 王大平, 宋丙剑, 韦库明. 大功率激电测量在辽宁北水泉寻找隐伏矿床的应用[J]. J4, 2010, 18(3): 76 -78 .
[8] 刘胜光, 高海峰, 黄锁英. 电子手薄在山东焦家金矿地质专业中的应用[J]. J4, 2010, 18(3): 79 -82 .
[9] 黄俊,吴家富,鲁如魁 ,夏立元. 内蒙古兵图金矿成因探讨及找矿方向[J]. J4, 2010, 18(4): 1 -5 .
[10] 刘新会,刘家军,陈彩华. 西秦岭寨上特大型金矿床硫盐矿物特征及其成因意义[J]. J4, 2010, 18(4): 6 -11 .