img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (6): 835-847.doi: 10.11872/j.issn.1005-2518.2022.05.186

• 矿产勘查与资源评价 • 上一篇    

万古金矿中碳质物的成因及其与金成矿的关系

张胜伟1,2(),邓腾1,2(),许德如1,2,3(),周岳强4,董国军4,李增华1,2,马文1,2,许可1,2,海颜1,2   

  1. 1.东华理工大学核资源与环境国家重点实验室,江西 南昌 330013
    2.东华理工大学地球科学学院,江西 南昌 330013
    3.东华理工大学江西省放射性地学大数据技术工程实验室,江西 南昌 330013
    4.湖南省地质矿产勘查开发局402地质队,湖南 长沙 410014
  • 收稿日期:2021-11-30 修回日期:2022-03-02 出版日期:2022-12-31 发布日期:2023-01-06
  • 通讯作者: 邓腾,许德如 E-mail:shengweizhang52@gmail.com;dengteng2015@gmail.com;xuderu@gig.ac.cn
  • 作者简介:张胜伟(1998-),男,山东郯城人,硕士研究生,从事金矿勘查研究工作。shengweizhang52@gmail.com
  • 基金资助:
    国家自然科学基金项目“江南造山带万古金矿床成矿流体活动的精细研究”(42002090);“江南古陆金(多金属)大规模成矿的机理研究”(41930428)

Genesis of Carbonaceous Material in the Wangu Gold Deposit and Its Relationship with Gold Mineralization

Shengwei ZHANG1,2(),Teng DENG1,2(),Deru XU1,2,3(),Yueqiang ZHOU4,Guojun DONG4,Zenghua LI1,2,Wen MA1,2,Ke XU1,2,Yan HAI1,2   

  1. 1.State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
    2.School of Earth Sciences, East China University of Technology, Nanchang 330013, Jiangxi, China
    3.Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology, East China University of Technology, Nanchang 330013, Jiangxi, China
    4.No. 402 Geological Party, Bureau of Geology and Mineral Resources Exploration and Development of Hunan Province, Changsha 410014, Hunan, China
  • Received:2021-11-30 Revised:2022-03-02 Online:2022-12-31 Published:2023-01-06
  • Contact: Teng DENG,Deru XU E-mail:shengweizhang52@gmail.com;dengteng2015@gmail.com;xuderu@gig.ac.cn

摘要:

万古金矿位于江南造山带中部,是该成矿带最具代表性的金矿床之一。万古金矿的赋矿围岩和矿石中可见大量碳质物(CM),然而碳质物的类型、成因及其与金成矿的关系仍不明确。通过进行系统的岩相学和激光拉曼光谱分析,发现万古金矿有3种类型的碳质物(CM1、CM2和CM3)。其中,CM1(T=507~613 ℃)呈粒状,分布在石英和云母中;CM2(T=390~470 ℃)呈层状,分布在黄铁矿和毒砂等矿物中;CM3(T=240~355 ℃)与石英和黄铁矿等热液矿物共生,且其形成温度与成矿温度相近。由此推断,CM1和CM2可能是变质成因,而CM3可能是热液成因。通过硫化物LA-ICP-MS分析,认为与CM2相关的黄铁矿更富Au和As。结合前人研究,认为万古金矿成矿前形成的层状CM2可作为还原剂,与含矿热液中金的络合物发生反应,致使金沉淀;CM3与黄铁矿共同沉淀,也有利于金成矿作用。

关键词: 碳质物(CM), 拉曼光谱, 造山型金矿, 硫化物LA-ICP-MS Mapping, 黄铁矿, 万古金矿, 江南造山带

Abstract:

The Wangu gold deposit,located in the central Jiangnan orogenic belt,is one of the most repre-sentative gold deposits.The orebodies are mainly hosted in the Neoproterozoic Lengjiaxi Group.Large amounts of carbonaceous material(CM) occurs in the host rocks and ores.However,the types and genesis of CM in the deposit and its relationship with gold mineralization are still unclear,which restricts the understanding of the precipitation mechanism of mineralization elements and the deep prospecting and exploration work. Systematic petrographic and laser Raman spectroscopic analyses of CM in surrounding rocks and ores show that there are three types of CM in the deposit,namely CM1,CM2 and CM3.Among them,CM1(T=507~613 ℃) is granular with small particles,which are distributed in quartz and micamineral particles or pores,in disseminated distribution,smooth edges and corners and good roundness,which may be the source of debris.CM2(T=390~470 ℃) is layered and distributed around minerals such aspyrite and arsenopyrite or in pyrite.CM3(T=240~355 ℃) coexists with hydrothermal minerals such as siderite,quartz and pyrite,and the formation temperature is close to the metallogenic temperature,surrounded by a large amount of pyrite,which is mainly produced in vein form.Consequently,CM1 and CM2 may have been formed by pre-ore metamorphism,which is of metamorphic origin,while CM3 may be the product of hydrothermal process,which is of hydrothermal origin.Sulfide LA-ICP-MS Mapping and trace element analyses show that the Au-As coupling phenomenon of sulfide in CM2 is wonderful.The pyrite rim is more enriched in Au,As,Co and Ni than the core,and poor in Bi,Pb,and Sb.In the vicinity of pores in the core of pyrite,most of them have abnormally high Au.The location of abnormally high Au,As,Co,and Ni is very similar,forming a growth ring of pyrite.The pyrite grains associated with both CM2 and CM3 contain gold,but those related to CM2 are richer in Au and As,and poor in trace elements such as Cu,Co,Ni,Bi,Pb.The sulfide of CM2 have no Te,however,the content of CM3 are less.Combining with previous studies,pre-ore layer CM2 can react with Au-bearing fluid as efficient reductant to prompt Au precipitation.However,hydrothermal CM3 together with pyrite precipitating from ore-bearing fluid,was also favorable to gold mineralization.

Key words: carbonaceous material(CM), Raman spectra, orogenic gold deposits, sulfide LA-ICP-MS Mapping, pyrite, Wangu gold deposit, Jiangnan orogenic belt

中图分类号: 

  • P618.51

图1

湘东北地区区域地质图(据Deng et al.,2020修改)A-汨罗断陷盆地;B-幕阜山—望湘断隆;C-长沙—平江断陷盆地;D-连云山—衡阳断隆;E-醴陵—攸县断陷盆地1.第四系;2.白垩—古近纪砂岩、砾岩和杂砂岩;3.中泥盆—中三叠世碳酸盐岩、砂岩和泥岩;4.震旦—志留纪砂岩、页岩、砾岩和板岩;5.新元古代板溪群碎屑沉积岩;6.新元古代冷家溪群浅变质浊积岩;7.新太古代—古元古代 (?)连云山岩群和涧溪冲岩群角闪岩相—麻粒岩相变质岩;8.燕山期花岗岩;9.印支期花岗岩;10.加里东期花岗岩;11.新元古代花岗岩;12.断层;13.金矿床或矿化点;14.韧性剪切带;15.Co矿床;16.Cu-Pb-Zn-Au矿床;17.图2区域"

图2

万古金矿地质图(据毛景文等,1997修改)1.第四系;2.白垩纪戴家坪组;3.新元古代坪原组第三段第二岩性亚段;4.新元古代坪原组第三段第一岩性亚段;5.新元古代坪原组第二段第二岩性亚段;6.新元古代坪原组第二段第一岩性亚段;7.新元古代坪原组第一段;8.矿体及编号;9.断裂及编号"

图3

万古金矿矿区剖面图(据毛景文等,1997修改)1.新元古代坪原组第二段第二岩性亚段;2.新元古代坪原组第二段第一岩性亚段;3.含金石英脉;4.金品位/厚度;5.层内断裂带;6.钻孔;7.产状"

图4

万古金矿的野外、手标本、扫描电镜和显微照片(a)碳质板岩与石英脉互层;(b)硫化物在碳质板岩和石英的边界分布;(c)扫描电镜显示分布在石英和云母的CM1颗粒;(d)扫描电镜显示自然金赋存在黄铁矿孔隙中;(e)层状CM2周围发育黄铁矿和毒砂等矿物(反射光);(f)CM3在石英和菱铁矿等矿物的周围分布(反射光);Qz-石英;Mca-云母;Py-黄铁矿;Sd-菱铁矿;Rt-金红石;Apy-毒砂;Au-金"

图5

不同类型CM的拉曼光谱分析"

表1

不同类型CM的拉曼光谱参数特征"

CM 类型样品ID

D1 峰

/cm-1

D1 峰面百

分比/%

G 峰/cm-1

G 峰面百

分比/%

D2 峰

/cm-1

D2 峰面百

分比/%

R1R2T/℃
Beysac方法Rahl方法
CM1A-1279.9316.021 876.1679.81128.764.170.150.16569.72612.48
A-2387.4722.542 180.1368.81218.718.650.180.23540.70551.29
A-3663.2123.443 845.8968.33393.848.220.170.23536.67540.10
A-4100.5126.59498.1666.1448.777.260.200.27522.66515.02
A-5696.3729.302 494.1063.97340.136.730.280.29510.61507.98
CM2B-1306.3739.39562.8453.83110.936.780.540.39465.70467.84
B-2216.1238.52502.6855.6475.345.840.430.39469.59449.40
B-3261.8848.37328.3144.3981.657.240.800.48425.75426.03
B-443.6248.7856.4816.8243.9034.400.770.49423.93416.72
B-5148.8956.15138.0737.9232.915.931.080.56391.13390.77
CM3C-12 911.9665.561 628.8533.30164.861.151.790.66349.28354.67
C-2391.2769.13166.3529.3730.431.502.350.69333.39309.90
C-3226.1670.89108.8427.9817.021.142.080.71325.56300.77
C-4124.3169.9652.5628.3610.421.682.370.70329.69300.29
C-5512.7575.11210.6821.9264.382.972.430.75306.75240.82

图6

CM2中硫化物LA-ICP-MS Mapping注:选取元素为Au、As、Cu、Bi、Co、Ni、Pb和Sb;以每秒计数(cps)"

图7

CM3中硫化物LA-ICP-MS Mapping注:选取元素为Au、As、Cu、Bi、Co、Ni、Pb和Sb;以每秒计数(cps)"

图8

不同类型CM中硫化物的微量元素浓度对比注:黄铁矿中金的饱和线据Reich et al.(2005)"

表2

不同类型CM中黄铁矿的LA-ICP-MS微量元素分析结果"

CM类型编号矿物AuAsSeCoNiCuSbTePbBiCo/Ni
CM22-1Py31.5648386.85-75.86165.25117.5063.88-67.760.490.46
2-2Py27.3536730.261.03162.38927.5944.0986.25-253.471.850.18
2-3Py40.2438000.63-253.36601.6130.7161.51-60.030.550.42
2-4Py34.2235014.360.8710.0079.1063.5882.53-36.980.100.13
2-5Py9.4029676.760.783.0435.2511.3235.41-38.560.090.09
CM33-1Py0.831846.1833.783013.17482.07241.14519.9017.871381.0623.956.25
3-2Py0.954223.6946.25786.321186.64194.92379.2510.451278.5411.960.66
3-3Py1.162061.7338.10517.69640.46173.19327.439.53973.7312.460.81
3-4Py0.52112.8621.8918.6723.24256.41287.11-673.515.470.80
3-5Py0.56141.1520.95158.32129.73206.05302.971.32982.055.891.22
检测限0.032.070.680.650.370.350.240.140.0020.02
Beny-Bassez C, Rouzaud J N,1985.Characterization of carbonaceous materials by correlated electron and optical microscopy and raman microspectroscopy[J].Scanning Ele-ctron Microscopy,(1):119-132.
Berner R A,1985.Sulphate reduction,organic matter decomposition and pyrite formation[J].Philosophical Transactions of the Royal Society of London(Series A,Mathematical and Physical Sciences),315(1531):25-38.
Beyssac O, Goffé B, Chopin C,et al,2002a.Raman spectra of carbonaceous material in metasediments:A new geothermometer[J].Journal of Metamorphic Geology,20(9):859-871.
Beyssac O, Rouzaud J N, Goffé B,et al,2002b.Graphitization in a high-pressure,low-temperature metamorphic gradient:A raman microspectroscopy and HRTEM study[J].Contributions to Mineralogy and Petrology,143(1):19-31.
Charvet J, Shu L, Shi Y,et al,1996.The building of south China:Collision of Yangzi and Cathaysia blocks,problems and tentative answers[J].Journal of Southeast Asian Earth Sciences,13(3/4/5):223-235.
Chen Zhenya, Chen Yuanlin, Gu Shangyi,et al,2019.Study on metallogenic relations of carboniferous quartz veins in orogenic gold deposits in southwest margin of Jiangnan Orogenic Belt[J].Mineral Exploration,10(4):870-879.
Cox S F,1995.Faulting processes at high fluid pressures:An example of fault valve behavior from the Wattle Gully Fault,Victoria,Australia[J].Journal of Geophysical Research:Solid Earth,100(B7):12841-12859.
Craw D,2002.Geochemistry of late metamorphic hydrothermal alteration and graphitisation of host rock,Macraes gold mine,Otago Schist,New Zealand[J].Chemical Geology,191(4):257-275.
Craw D, Mortensen J, MacKenzie D,et al,2015.Contrasting geochemistry of orogenic gold deposits in Yukon,Canada and Otago,New Zealand[J].Geochemistry:Exploration,Environment,Analysis,15(2/3):150-166.
Cui N, Sun L, Bagas L,et al,2017.Geological characteristics and analysis of known and undiscovered graphite resources of China[J].Ore Geology Reviews,91:1119-1129.
Deng T, Xu D R, Chi G X,et al,2017.Geology,geochronology,geochemistry and ore genesis of the Wangu gold deposit in northeastern Hunan Province,Jiangnan Orogen,South China[J].Ore Geology Reviews,88:619-637.
Deng T, Xu D R, Chi G X,et al,2020.Caledonian (Early Paleozoic) veins overprinted by Yanshanian (Late Mesozoic) gold mineralization in the Jiangnan Orogen:A case study on gold deposits in northeastern Hunan,South China[J].Ore Geology Reviews,124:103586.
Ding Z, Deng T, Xu D,et al,2020.Genesis of two types of carbonaceous material associated with gold mineralization in the Bumo deposit,Hainan Province,South China[J].Minerals,10(8):708.
Fu Zhaoren, Li Zijin, Zheng Dayu,1999.Tectonic development style of NNE strike slip orogenic belt in Hunan Jiangxi border area[J].Earth Science Frontiers,(4):263-272.
Gaboury D,2021.The neglected involvement of organic matter in forming large and rich hydrothermal orogenic gold deposits[J].Geosciences,11(8):344.
Gan C, Wang Y, Barry T L,et al,2020.Late Jurassic high-Mg andesites in the Youjiang Basin and their significance for the southward continuation of the Jiangnan Orogen,South China[J].Gondwana Research,77:260-273.
Groves D I, Goldfarb R J, Robert F,et al,2003.Gold deposits in metamorphic belts:Overview of current understanding,outstanding problems,future research,and exploration significance[J].Economic Geology,98(1):1-29.
Guan Y, Yuan C, Sun M,et al,2014.I-type granitoids in the eas-tern Yangtze Block:Implications for the Early Paleozoic intracontinental orogeny in South China[J].Lithos,206:34-51.
Hu S Y, Evans K, Craw D,et al,2017.Resolving the role of carbonaceous material in gold precipitation in metasediment-hosted orogenic gold deposits[J].Geology,45(2):167-170.
Hu S, Evans K, Craw D,et al,2015.Raman characterization of carbonaceous material in the Macraes orogenic gold deposit and metasedimentary host rocks,New Zealand[J].Ore Geology Reviews,70:80-95.
Kříbek B, Sýkorová I, Machovič V,et al,2015.The origin and hydrothermal mobilization of carbonaceous matter associated with Paleoproterozoic orogenic-type gold deposits of West Africa[J].Precambrian Research,270:300-317.
Lehmann B, Nägler T F, Holland H D,et al,2007.Highly metalliferous carbonaceous shale and Early Cambrian seawater[J].Geology,35(5):403-406.
Leventhal J S, Grauch R I, Threlkeld C N,et al,1987.Unusual organic matter associated with uranium from the Claude deposit,Cluff Lake,Canada[J].Economic Geology,82(5):1169-1176.
Lewan M D, Bjorøy M, Dolcater D L,1986.Effects of thermal maturation on steroid hydrocarbons as determined by hydrous pyrolysis of Phosphoria Retort Shale[J].Geochimica et Cosmochimica Acta,50(9):1977-1987.
Li H, Wu Q H, Evans N J,et al,2018.Geochemistry and geochronology of the Banxi Sb deposit:Implications for fluid origin and the evolution of Sb mineralization in central-western Hunan,South China[J].Gondwana Research,55:112-134.
Liu Qinfu, Yuan Liang, Li Kuo,et al,2018.Structural characteristics of different metamorphic grade coal-based graphite[J].Earth Science,43(5):1663-1669.
Lu Huanzhang, Chi Guoxiang, Zhu Xiaoqing,et al,2018.Geological characteristics and ore forming fluids of orogenic gold deposits[J].Geotectonica et Metallogenia,42(2):244-265.
Ma W, Deng T, Xu D R,et al,2021.Geological and geochemical characteristics of hydrothermal alteration in the Wangu deposit in the central Jiangnan Orogenic Belt and implications for gold mineralization[J].Ore Geology Reviews,139:1-16.DOI:10.1016/j.oregeorev.2021.104479 .
doi: 10.1016/j.oregeorev.2021.104479
Mao Jingwen, Li Hongyan,1997.Research on genesis of the gold deposits in the Jiangnan terrain[J].Geochimica,(5):71-81.
McKeag S A, Craw D, Norris R J,1989.Origin and deposition of a graphitic schist-hosted metamorphogenic Au-W deposit,Macraes,East Otago,New Zealand[J].Mineralium Deposita,24(2):124-131.
Mirasol-Robert A, Grotheer H, Bourdet J,et al,2017.Evidence and origin of different types of sedimentary organic matter from a Paleoproterozoic orogenic Au deposit[J].Precambrian Research,299:319-338.
Mossman D J,1999.Carbonaceous substances in mineral deposits:Implications for geochemical exploration[J].Journal of Geochemical Exploration,66(1/2):241-247.
Pirajno F, Bagas L,2002.Gold and silver metallogeny of the South China Fold Belt:A consequence of multiple mineralizing events?[J].Ore Geology Reviews,20(3/4):109-126.
Rahl J M, Anderson K M, Brandon M T,et al,2005.Raman spectroscopic carbonaceous material thermometry of low-grade metamorphic rocks:calibration and application to tectonic exhumation in Crete,Greece[J].Earth and Planetary Science Letters,240(2):339-354.
Razvozzhaeva E A, Nemerov V K, Spiridonov A M,et al,2008.Carbonaceous substance of the Sukhoi Log gold deposit (East Siberia)[J].Russian Geology and Geophysics,49(6):371-377.
Reich M, Kesler S E, Utsunomiya S,et al,2005.Solubility of gold in arsenian pyrite[J].Geochimica et Cosmochimica Acta,69(11):2781-2796.
Teichmüller M,1986.Organic petrology of source rocks,history and state of the art[J].Organic Geochemistry,10(1/2/3):581-599.
Wang C, Shao Y, Evans N J,et al,2020.Genesis of Zixi gold deposit in Xuefengshan,Jiangnan Orogen (South China):Age,geology and isotopic constraints[J].Ore Geology Reviews,117:103301.
Wang J Q, Shu L S, Santosh M,2016.Petrogenesis and tectonic evolution of Lianyunshan complex,South China:Insights on Neoproterozoic and late Mesozoic tectonic evolution of the central Jiangnan Orogen[J].Gondwana Research,39:114-130.
Wang Qingfei, Deng Jun, Zhao Hesen,et al,2019.Review on orogenic gold deposits[J].Earth Science,44(6):2155-2186.
Wang Yitian, Liu Junchen, Mao Jingwen,2020.Metallogenic characteristics and conditions of 3 main types of gold deposits and their exploration significances[J].Gold,41(9):12-21.
Wen Zhilin, Deng Teng, Dong Guojun,et al,2016.Characteristics of ore-controlling structures of Wangu gold deposit in northeast Hunan Province[J].Geotectonica et Metallogenia,40(2):281-294.
Wu Y F, Evans K, Fisher L A,et al,2020.Distribution of trace elements between carbonaceous matter and sulfides in a sediment-hosted orogenic gold system[J].Geochimica et Cosmochimica Acta,276:345-362.
Wu Y F, Li J W, Evans K,et al,2018.Ore-forming processes of the Daqiao epizonal orogenic gold deposit,West Qinling orogen,China:Constraints from textures,trace elements,and sulfur isotopes of pyrite and marcasite,and raman spectroscopy of carbonaceous material[J].Economic Geology,113(5):1093-1132.
Xiao Yongjun, Chen Guanghao,2004.Preliminary study on the tectono-metallogenic orientation mechanism of the Dadong-Wangu gold deposit zone,northeastern Hunan Province[J].Geotectonica et Metallogenia,(1):38-44.
Xu D R, Deng T, Chi G X,et al,2017.Gold mineralization in the Jiangnan Orogenic Belt of South China:Geological,geochemical and geochronological characteristics,ore deposit-type and geodynamic setting[J].Ore Geology Reviews,88:565-618.
Xu D R, Gu X X, Li P C,et al,2007.Mesoproterozoic-Neoproterozoic transition:Geochemistry,provenance and tectonic setting of clastic sedimentary rocks on the SE margin of the Yangtze Block,South China[J].Journal of Asian Earth Sciences,29(5/6):637-650.
Zhang L, Yang L Q, Groves D I,et al,2018.Geological and isotopic constraints on ore genesis,Huangjindong gold deposit,Jiangnan Orogen,southern China[J].Ore Geology Reviews,99:264-281.
Zhang L, Yang L Q, Groves D I,et al,2019.An overview of timing and structural geometry of gold,gold-antimony and antimony mineralization in the Jiangnan Orogen,southern China[J].Ore Geology Reviews,115:103173.
Zhong J, Pirajno F, Chen Y J,2017.Epithermal deposits in South China:Geology,geochemistry,geochronology and tectonic setting[J].Gondwana Research,42:193-219.
Zhou Y, Xu D, Dong G,et al,2021.The role of structural reactivation for gold mineralization in northeastern Hunan Province,South China[J].Journal of Structural Geology,145:104306.
Zou S H, Zou F H, Ning J T,et al,2018.A stand-alone Co mineral deposit in northeastern Hunan Province,South China:Its timing,origin of ore fluids and metal Co,and geodynamic setting[J].Ore Geology Reviews,92:42-60.
陈振亚,陈原林,顾尚义,等,2019.江南造山带西南缘造山型金矿含炭质石英脉与金成矿关系研究[J].矿产勘查,10(4):870-879.
傅昭仁,李紫金,郑大瑜,1999.湘赣边区NNE向走滑造山带构造发展样式[J].地学前缘,(4):263-272.
刘钦甫,袁亮,李阔,等,2018.不同变质程度煤系石墨结构特征[J].地球科学,43(5):1663-1669.
卢焕章,池国祥,朱笑青,等,2018.造山型金矿的地质特征和成矿流体[J].大地构造与成矿学,42(2):244-265.
毛景文,李红艳,1997.江南古陆某些金矿床成因讨论[J].地球化学,(5):71-81.
王庆飞,邓军,赵鹤森,等,2019.造山型金矿研究进展:兼论中国造山型金成矿作用[J].地球科学,44(6):2155-2186.
王义天,刘俊辰,毛景文,2020.3种主要类型金矿床成矿特征、成矿条件及找矿意义[J].黄金,41(9):12-21.
温志林,邓腾,董国军,等,2016.湘东北万古金矿床控矿构造特征与控矿规律研究[J].大地构造与成矿学,40(2):281-294.
肖拥军,陈广浩,2004.湘东北大洞─万古地区金矿构造成矿定位机制的初步研究[J].大地构造与成矿学,(1):38-44.
[1] 万泰安,许德如,马文,张胜伟,王国建,卞玉冰,李博. 湘东北万古金矿床不同期次黄铁矿微量元素特征及其对金成矿机制的启示[J]. 黄金科学技术, 2022, 30(5): 676-690.
[2] 刘永乐,张爱奎,刘智刚,孙非非,何书跃,张大明,奎明娟,张建平. 青海东昆仑西段金矿成因类型及成矿模式[J]. 黄金科学技术, 2022, 30(4): 483-497.
[3] 陈海龙,徐质彬,杨晓弘,杨海燕,吴圣刚,郑伯仁,高磊,陈俊辉. 烃汞叠加晕法在湖南万古金矿区及其外围深部找矿中的应用[J]. 黄金科学技术, 2022, 30(3): 366-381.
[4] 陈振, 王翠芝, 吕古贤, 张宝林, 张启鹏, 魏竣滨, 史晓鸣. 柴胡栏子金矿黄铁矿的化学成分标型特征及其矿床学意义[J]. 黄金科学技术, 2022, 30(2): 165-178.
[5] 许可, 许德如. 江南造山带黄金洞金矿蚀变岩型金矿化形成机制研究[J]. 黄金科学技术, 2022, 30(2): 151-164.
[6] 梁改忠,杨奎锋,范宏瑞,李兴辉. 东昆仑阿斯哈金矿胶状黄铁矿成因及其成矿意义[J]. 黄金科学技术, 2022, 30(1): 19-33.
[7] 王智琳,伍杨,许德如,邹少浩,董国军,彭尔柯,宁钧陶,康博. 湘东北长沙—平江断裂带关键金属钴的赋存状态与成矿规律[J]. 黄金科学技术, 2020, 28(6): 779-785.
[8] 温佳伟,史鹏亮,刘彦兵,张静,屈海浪,李元申,胡博心,缪广. 辽宁二道沟金矿床黄铁矿热电性特征及深部找矿预测[J]. 黄金科学技术, 2020, 28(6): 812-824.
[9] 高华, 谢玉华, 杨亮, 张哲, 柯新星, 刘晓敏, 罗建镖, 刘琦, 刘继顺, 王智琳, 孔华. 湖南通道地区金矿床中黄铁矿成分标型特征及对矿床成因的启示[J]. 黄金科学技术, 2020, 28(5): 712-726.
[10] 陈港, 陈懋弘, 马克忠, 葛锐, 郭申祥, 吴启强, 原其生. 广西贵港六梅金矿的成因类型及找矿意义[J]. 黄金科学技术, 2020, 28(4): 479-496.
[11] 张振, 宁生元, 徐增田. 胶东玲珑九曲金矿床载金黄铁矿矿物学特征及其深部找矿意义[J]. 黄金科学技术, 2020, 28(3): 328-336.
[12] 陈玉民, 张华锋, 张聪颖, 胡换龙, 王昭坤, 曾庆栋, 范宏瑞. 黄铁矿标型特征对胶东三山岛金矿深部矿化的启示[J]. 黄金科学技术, 2019, 27(5): 637-647.
[13] 罗清威,王保国,义爱文,张克川,潘泽,张盛亚. 坦桑尼亚某绿岩带型金矿床中黄铁矿的标型特征及意义[J]. 黄金科学技术, 2019, 27(1): 15-24.
[14] 刘艳华,陈国宝,杨洪英,金哲男,王改荣. 毒砂机械活化性能及其浸出试验研究[J]. 黄金科学技术, 2018, 26(5): 669-676.
[15] 张蕾蕾, 张静, 王琦崧, 陈良, 陈叙安. 熊耳山地区槐树坪金矿床黄铁矿特征及其地质意义[J]. 黄金科学技术, 2018, 26(4): 481-491.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!