img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (5): 724-732.doi: 10.11872/j.issn.1005-2518.2022.05.057

• 采选技术与矿山管理 • 上一篇    下一篇

粉煤灰改良铁尾矿膏体充填材料试验研究

海龙(),程同俊(),徐博,赵鑫   

  1. 辽宁工程技术大学力学与工程学院,辽宁 阜新 123000
  • 收稿日期:2022-04-24 修回日期:2022-09-07 出版日期:2022-10-31 发布日期:2022-12-10
  • 通讯作者: 程同俊 E-mail:Hailong8901@163.com;383544706@qq.com
  • 作者简介:海龙(1975-),男,辽宁阜新人,副教授,从事采煤地表沉陷灾害评价与控制、固体废弃物综合利用及矿山采空区充填研究工作。Hailong8901@163.com

Experimental Study on the Paste Filling Material of Iron Tailings Improved by Fly Ash

Long HAI(),Tongjun CHENG(),Bo XU,Xin ZHAO   

  1. School of Mechanics and Engineering,Liaoning Technical University,Fuxin 123000,Liaoning,China
  • Received:2022-04-24 Revised:2022-09-07 Online:2022-10-31 Published:2022-12-10
  • Contact: Tongjun CHENG E-mail:Hailong8901@163.com;383544706@qq.com

摘要:

铁尾矿大量堆存不仅造成环境污染而且存在地质灾害风险,将其用作膏体充填材料骨料,能够解决尾矿危害并保证矿山地下采场的安全稳定。通过开展相关试验,研究了本溪歪头山铁尾矿基本性质,发现其比重大、细颗粒含量少且级配不良,不适合单独作为膏体充填材料骨料。通过试验研究粉煤灰基本性质,选择将其作为掺合料,掺量由0开始以2.5%的梯度升高至15%,通过坍落度试验确定料浆质量浓度为72%,混合各材料制备膏体充填材料。试验研究了不同粉煤灰掺量下充填材料的坍落度、抗压强度、孔隙率和吸水率的变化。结果表明:随着粉煤灰掺量的增加,料浆坍落度由180.2 mm增加至240.2 mm,试件孔隙率先减小后略微上升,吸水率提升,28 d无侧限抗压强度达1.359 MPa。研究表明掺入粉煤灰可以提升膏体充填材料流动性和强度,但粉煤灰掺入量以不多于固体质量的12.5%为宜,该研究成果可为其他金属矿山改良充填结构提供理论支持。

关键词: 铁尾矿, 全尾砂, 膏体充填, 粉煤灰, 性能改良

Abstract:

The large storage of iron tailings not only causes environment pollution,but also has the risk of geological disasters.It can be used as paste filling material aggregate,which can solve the harm of tailings and ensure the safety and stability of underground stope.The Waitoushan iron mine adopts filling method.The filling material is composed of iron tailings,cement and water and the filling slurry has a mass concentration of 68%,which belongs to cemented filling with low-concentration whole tailings.Due to the low mass concentration of filling slurry, the whole tailings of iron tailings are coarse.Fine particles such as cement in the slurry are easily lost,which are not only waste cementing materials and affect the strength of the filling body,but also seriously pollute the underground environment.The filling material composition is fixed,and other admixtures and additives are not added,so the filling structure of the mine is single.Aiming at the problems of waste of filling materials and single filling structure in Waitoushan iron mine,the basic properties of Waitoushan iron tailings were studied by relevant tests.The test shows that the iron tailings have a large proportion,a small content of fine particles and poor gradation,so it is not suitable as paste aggregate alone.The fly ash was selected as admixture to supplement the fine particles in the iron tailings.The content of fly ash increased from 0 to 15% in a gradient of 2.5%,and the mass concentration of slurry was 72%,the paste filling material was prepared by mixing all materials.The slump,compressive strength,porosity and water absorption of filling materials with different fly ash content were tested.The results show that with the increase of fly ash content,the slump of slurry increases from 180.2 mm to 240.2 mm,the porosity decreases first and then slightly increases,and the water absorption rate increases.The unconfin compressive strength of filling material specimen could reach 1.359 MPa in 28 days.The results show that the fluidity and unconfined compressive strength of paste filling materials can be improved by adding fly ash,but the amount of fly ash should be no more than 12.5% of the solid mass.The results provide theoretical support for other metal mines to improve the filling structure.

Key words: iron tailings, full tailings, paste filling, fly ash, performance improvement

中图分类号: 

  • X753

表1

鹰山牌P·O32.5型普通硅酸盐水泥性能参数"

参数名称数值参数名称数值
初凝时间/min210体积安定性合格
终凝时间/min300标准稠度用水量/%28.5
3 d抗折强度/MPa3.6w(SO3)/%≤3.5
3 d抗压强度/MPa15.6w(MgO)/%≤6.0
28 d抗折强度/MPa7.7w(Cl-)/%≤0.10
28 d抗压强度/MPa33.9

表2

材料化学成分"

化学成分铁尾矿粉煤灰
SiO273.9349.35
Al2O32.3828.58
Fe2O314.188.66
CaO3.855.37
MgO3.491.27
SO30.14-

图1

材料颗粒级配"

图2

铁尾矿和粉煤灰SEM图像"

表3

不同粉煤灰掺量下试样参数"

组别坍落度/mm无侧限抗压强度/MPa孔隙率/%吸水率/%
3 d7 d14 d28 d3 d28 d
T1180.20.1490.2310.4550.84111.179.7117.32
T2199.60.1740.2370.4400.94911.079.3219.12
T3216.80.1560.2820.4641.07210.498.7419.72
T4225.30.1840.2650.4981.22510.138.0921.49
T5232.10.1990.2940.5511.3599.267.1223.89
T6237.50.2050.3020.5321.3139.217.2327.12
T7240.20.2010.3020.5191.2989.417.3231.43

图3

坍落度拟合曲线"

图4

充填材料力学性能"

图5

试件的7 d和28 d单轴抗压强度"

图6

粉煤灰掺量与孔隙率"

图7

养护龄期为3 d和28 d试块的SEM图像"

图8

28 d充填材料XRD图谱"

Chan D, Sun P C,2006.Effects of fine recycled aggregate as sand replacement in concrete[J].Transaction of the Hongkong Institute of Engineers,13(4):2-7.
Das B B, Kondraivendhan B,2011.Implication of pore size distribution parameters on compressive strength,permeability and hydraulic diffusivity of concrete[J].Construction and Building Materials,28(1):382-386.
Fall M, Pokharel M,2010.Coupled effects of sulphate and temperature on the strength development of cemented tailings backfills:Portland cement-paste backfill[J].Cement and Concrete Composites,32(10):819-828.
Huang Xiaoyan, Ni Wen, Zhu Liping,et al,2010.Grinding characteristic of Qidashan iron tailings[J].Chinese Journal of Engineering,32(10):1253-1257.DOI:10.13374/j.issn 1001-053x.2010.10.003 .
doi: 10.13374/j.issn 1001-053x.2010.10.003
Ke Xing,2016.Study on Structure and Properties of the Consolidation Mass of Cemented Tailings Backfill[D].Wuhan:Wuhan University.
Liu Lang, Fang Zhiyu, Zhang Bo,et al,2021.Development history and basic categories of mine backfill technology[J].Metal Mine,50(3):1-10.DOI:10.19614/j.cnki.jsks.202103001 .
doi: 10.19614/j.cnki.jsks.202103001
Meng Fanjing, Liu Huabo, Hua Shaozhen,2021.Mechanical mechanism of influence of inter-granular friction on granular lubrication[J].Engineering Mechanics,38(4):221-229,246.
Meng W N, Khayat K H,2016.Mechanical properties of ultra-high-performance concrete enhanced with graphite nanoplatelets and carbon nanofibers[J].Composites Part B:Engineering,107:113-122.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China,2019. Standard of geotechnical test method: [S].Beijing:China Planning Press.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China,State Administration of Market Supervision,2019. Standard for test methods of physical and mechanical properties of concrete: [S].Beijing:China Building Industry Press.
Mohd Zain M F, Radin S S,2000.Physical properties of high-performance concrete with admixtures to a medium temperature range 20 ℃ to 50 ℃[J].Cement and Concrete Research,30(8):1283-1287.
Paiva H, Silva A S, Velosa A,et al,2017.Microstructure and hardened state properties on pozzolan-containing concrete[J].Construction and Building Materials,140:374-384.
Pokharel M, Fall M,2013.Combined influence of sulphate and temperature on the saturated hydraulic conductivity of hardened cemented paste backfill[J].Cement and Concrete Composites,38:21-28.
Scrivener K L, Crumbie A K, Laugesen P,2004.The interfacial transition zone (ITZ) between cement paste and aggregate in concrete[J].Interface Science,12(4):411-421.
State Administration of Market Supervision,State Administration for Standardization,2020. Technical specification for full tailings paste filling: [S].Beijing:China Standard Press.
Wang Qihu, Zhang Guangquan, Ye Yicheng,et al,2019.Study on stress coordination of composite support body in stope filled alternately with waste rock and tailings[J].China Safety Science Journal,29(4):96-103.
Wang X P, Yu R, Shui Z H,et al,2017.Mix design and characteristics evaluation of an eco-friendly ultra-high performance concrete incorporating recycled coral based materials[J].Journal of Cleaner Production,165:70-80.
Wang Zheng,2020.Study on Corrosive Characteristics and Zoning Evaluation of Concrete Under Water/Soil Environment in Shanxi Province[D].Taiyuan:Taiyuan University of Technology.DOI:10.27352/d.cnki.gylgu.2020.000866 .
doi: 10.27352/d.cnki.gylgu.2020.000866
Yi Longsheng, Mi Hongcheng, Wu Qian,et al,2020.Present situation of comprehensive utilization of tailings resources in China[J].Conservation and Utilization of Mineral Resources,40(3):79-84.DOI:10.13779/j.cnki.issn1001-0076.2020.03.013 .
doi: 10.13779/j.cnki.issn1001-0076.2020.03.013
Yu L, Zhang J X, Mu K,2012.Relationships between compressive strength and microstructure in mortars with iron ore tailings as fine aggregate[J].Applied Mechanics and Materials,188:211-218.
Zeng Yayuqiong, Pan Jianping, Yang Xiuying,et al,2018.Application of iron tailings in road base materials[J].Applied Chemical Industry,47(2):358-364.DOI:10.16581/j.cnki.issn1671-3206.20171204.047 .
doi: 10.16581/j.cnki.issn1671-3206.20171204.047
Zhang Lihua,2010.Discussion on the controlling method for backfilling cement-sand ratio[J].China Mine Engineering,39(5):20-22,29.
国家市场监督管理总局,国家标准化管理委员会,2020. 全尾砂膏体充填技术规范: [S].北京:中国标准出版社.
黄晓燕,倪文,祝丽萍,等,2010.齐大山铁尾矿粉磨特性[J].北京科技大学学报,32(10):1253-1257.DOI:10.13374/j.issn1001-053x.2010.10.003 .
doi: 10.13374/j.issn1001-053x.2010.10.003
柯兴,2016.尾砂胶结充填固结体结构与性能研究[D].武汉:武汉大学.
刘浪,方治余,张波,等,2021.矿山充填技术的演进历程与基本类别[J].金属矿山,50(3):1-10.DOI:10.19614/j.cnki.jsks.202103001 .
doi: 10.19614/j.cnki.jsks.202103001
孟凡净,刘华博,花少震,2021.颗粒间摩擦对颗粒流润滑影响的力学机制[J].工程力学,38(4):221-229,246.
王其虎,张光权,叶义成,等,2019.废石尾砂交替充填采场复合支撑体应力协调研究[J].中国安全科学学报,29(4):96-103.
王铮,2020.山西省水土环境对混凝土的腐蚀分区评价及其腐蚀特性研究[D].太原:太原理工大学.DOI:10.27352/d.cnki.gylgu.2020.000866 .
doi: 10.27352/d.cnki.gylgu.2020.000866
易龙生,米宏成,吴倩,等,2020.中国尾矿资源综合利用现状[J].矿产保护与利用,40(3):79-84.DOI:10.13779/j.cnki.issn1001-0076.2020.03.013 .
doi: 10.13779/j.cnki.issn1001-0076.2020.03.013
曾雅钰琼,潘建平,杨秀英,等,2018.铁尾矿在道路基层材料中的应用研究进展[J].应用化工,47(2):358-364.DOI:10.16581/j.cnki.issn1671-3206.20171204.047 .
doi: 10.16581/j.cnki.issn1671-3206.20171204.047
张利华,2010.充填料灰砂比控制方法探讨[J].中国矿山工程,39(5):20-22,29.
中华人民共和国住房和城乡建设部,2019. 土工试验方法标准: [S].北京:中国计划出版社.
中华人民共和国住房和城乡建设部,国家市场监督管理总局,2019. 混凝土物理力学性能试验方法标准: [S].北京:中国建筑工业出版社.
[1] 李兆宇,孙伟,张盛友,李金鑫. 全尾砂物理特性对絮凝沉降性能影响规律的研究[J]. 黄金科学技术, 2022, 30(1): 64-71.
[2] 张美道,饶运章,徐文峰,王文涛. 全尾砂膏体充填配比优化正交试验[J]. 黄金科学技术, 2021, 29(5): 740-748.
[3] 赵鑫,海龙,徐博,程同俊. 电厂灰渣制备井下膏体充填材料试验研究[J]. 黄金科学技术, 2021, 29(4): 582-592.
[4] 康虔,王运敏,贺严,薛希龙,张楚旋. 固液两相耦合条件下全尾砂连续沉降规律研究[J]. 黄金科学技术, 2019, 27(6): 896-902.
[5] 焦华喆, 靳翔飞, 陈新明, 杨亦轩, 王金星. 全尾砂重力浓密导水通道分布与细观渗流规律[J]. 黄金科学技术, 2019, 27(5): 731-739.
[6] 江科,康瑞海,姚中亮,彭亮. 全尾砂最佳絮凝沉降浓度及调控方式研究[J]. 黄金科学技术, 2019, 27(3): 440-448.
[7] 徐文峰,饶运章,李尚辉,许威. 含膨润土充填料浆泌水特性分析[J]. 黄金科学技术, 2019, 27(3): 433-439.
[8] 陈鑫政,郭利杰,李文臣,李宗楠. 全尾砂沉降浓缩试验研究[J]. 黄金科学技术, 2019, 27(1): 105-111.
[9] 李夕兵,刘冰. 硬岩矿山充填开采现状评述与探索[J]. 黄金科学技术, 2018, 26(4): 492-502.
[10] 王新民, 赵茂阳, 荣帅, 王浩, 张云海. APAM对全尾砂胶结充填体早期强度影响研究[J]. 黄金科学技术, 2018, 26(3): 305-311.
[11] 赵国彦,侯俊,张小瑞,李地元,王涛. 磷石膏膏体充填体力学特性研究[J]. 黄金科学技术, 2016, 24(5): 7-12.
[12] 戴兴国,李岩,张碧肖. 深井膏体降压满管输送数值模拟研究[J]. 黄金科学技术, 2016, 24(3): 70-75.
[13] 王新民,胡一波,王石,刘吉祥,陈宇,卞继伟. 超细全尾砂充填配比优化正交试验研究[J]. 黄金科学技术, 2015, 23(3): 45-49.
[14] 戴兴国,方鑫,陈增剑,黄毅. 良山铁矿全尾砂胶结充填参数的合理选择[J]. 黄金科学技术, 2015, 23(1): 74-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王大平, 宋丙剑, 韦库明. 大功率激电测量在辽宁北水泉寻找隐伏矿床的应用[J]. J4, 2010, 18(3): 76 -78 .
[2] 刘胜光, 高海峰, 黄锁英. 电子手薄在山东焦家金矿地质专业中的应用[J]. J4, 2010, 18(3): 79 -82 .
[3] 柳玉明, 柳楠, 张杰, 宋玉波, 宫隆吉, 王刚, 刘晓, 张海芳. 山东英格庄金矿床构造特征研究及找矿方向[J]. J4, 2010, 18(6): 26 -29 .
[4] 傅星. 青海绿梁山地区金矿床地质特征及成矿条件浅析[J]. J4, 2010, 18(4): 54 -57 .
[5] 冷寒松, 邓尧增, 胥华龙, 刘涛, 王卓. 有底柱分段崩落采矿法在焦家金矿的研究与应用[J]. J4, 2010, 18(4): 65 -67 .
[6] 刘东海, 刘新会. 西秦岭寨上特大型金矿床黄铁矿特征及其含金性研究[J]. J4, 2010, 18(6): 8 -12 .
[7] 伊有昌, 马财, 李月隆, 潘彤, 罗才让, 王春英. 青海省板块构造环境与成矿作用[J]. J4, 2007, 15(1): 1 -9 .
[8] 陈生民. 天祝县马营沟锑矿地质特征[J]. J4, 2008, 16(1): 56 -57 .
[9] 黄建军, 李天恩, 范红科. 大兴安岭地区金(银)多金属矿成矿地质背景及找矿潜力的探讨[J]. J4, 2010, 18(6): 13 -17 .
[10] 李涛, 王书春, 孙树提, 汪仁健, 李亚新, 王宝明. 赤峰柴胡栏子金矿区矿体成矿规律及其找矿应用[J]. J4, 2010, 18(6): 22 -25 .