img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (4): 623-631.doi: 10.11872/j.issn.1005-2518.2022.04.165

• 采选技术与矿山管理 • 上一篇    

某难选金矿选厂浮选时间和放大系数的优化研究

明平田1,2,3(),李飞1,2,3(),熊召华1,2,3,陈自强1,2,3,马生萍1,2,3   

  1. 1.都兰金辉矿业有限公司,青海 都兰 816100
    2.青海省第六地质勘查院,青海 格尔木 816000
    3.青海省金矿资源开发工程技术研究中心,青海 都兰 816100
  • 收稿日期:2021-11-09 修回日期:2022-05-25 出版日期:2022-08-31 发布日期:2022-10-31
  • 通讯作者: 李飞 E-mail:ptming4500@sina.com;376169069@qq.com
  • 作者简介:明平田(1977-),男,陕西山阳人,正高级工程师,从事选矿工艺研究和生产管理等工作。ptming4500@sina.com
  • 基金资助:
    四川省区域创新合作项目“柴达木盆地大型金矿资源高效提质降杂新技术研究与示范”(22QYCX0061)

Study on Optimization of Flotation Time and Magnification Coefficient of a Refractory Gold Ore Concentrator

Pingtian MING1,2,3(),Fei LI1,2,3(),Zhaohua XIONG1,2,3,Ziqiang CHEN1,2,3,Shengping MA1,2,3   

  1. 1.Dulan Jinhui Mining Co. , Ltd. , Dulan 816100, Qinghai, China
    2.Qinghai 6th Institute of Geology Exploration, Xining 816000, Qinghai, China
    3.The Engineering and Technology Research Center for the Development of Gold Mining Resources in Qinghai Province, Dulan 816100, Qinghai, China
  • Received:2021-11-09 Revised:2022-05-25 Online:2022-08-31 Published:2022-10-31
  • Contact: Fei LI E-mail:ptming4500@sina.com;376169069@qq.com

摘要:

浮选时间是选厂设计的重要参数之一,而浮选时间的确定与实验室小型试验的浮选时间和放大系数有关。针对难选金矿浮选时间的选定问题,在某选厂原设计(1 500 t/d)的基础上,重新进行了选厂设计以及实际浮选时间和放大系数的计算,验证选厂浮选时间的放大系数。随着矿石性质的变化,在该选厂开展了浮选工艺优化试验,将试验成果应用于选厂生产中,并在磨矿细度和浮选条件相同的情况下,开展了不同矿石处理量工业试验,确定了选厂最佳矿石处理量,计算了优化后的浮选时间和放大系数。结果表明:小型试验浮选时间为21 min,选厂实际浮选时间为84.08 min,实际放大系数为4.00;相比优化前,在原矿金品位降低0.47 g/t的情况下,选厂矿石处理量增加了204 t/d,金精矿富集比降低了0.11,金回收率提高了3.22%。研究结果可为同类型矿石性质选厂的浮选工艺设计提供参考。

关键词: 难选金矿, 浮选时间, 放大系数, 工艺优化, 处理量, 浮选指标

Abstract:

Flotation time is one of the important parameters in the design of concentrator.The length of flotation time has great influence on the recovery and utilization of mineral resources and the operation effect of the concentrator.The determination of flotation time is related to the flotation time and magnification factor of small laboratory tests.In view of the selection of flotation time for refractory gold ores and the verification of the amplification factor of the flotation time of the concentrator,the concentrator was designed on the basis of the design of a 1 500 t/d concentrator,and the actual flotation time and amplification factor were calculated.The flotation time of the pilot scale test was 31 min.The designed flotation time is 54 min,and the average amplification coefficient is 1.74(roughing K value is 1.5,cleaning K value is 2.50 to 2.67).The actual flotation time of the concentrator is 68.99 min,and the actual amplification coefficient is 2.23(the actual rough scavenging K value is 1.86 to 2.41,and the actual cleaning K value is 1.88 to 3.45).With the change of ore properties,the pilot scale test of flotation process optimization was carried out for the gold mine according to the change of ore properties.Compared with the flotation test in the design,the flotation concentration is increased from 25% to 28%,the -74 μm content of grinding classification product is reduced from 75% to 71%,and the collector butyl xanthate was replaced with iso-amyl xanthate.The amount of sodium carbonate in rough scavenging process increases by 500 g/t,the amount of copper sulfate decreases by 200 g/t,no more copper sulfate and sodium carbonate was added in scavenging,and the flotation time is reduced from 31 min to 21 min.On this basis,the mineral processing tests with the same grinding fineness,flotation concentration and system conditions were conducted in the mill.The best ore dressing plant capacity of 1 704 t/d was determined.Combined with the survey of flotation process,according to the laboratory flotation test,the time of flotation,the flotation machine volume of each activity and the concentration of flotation were determined.The flotation time and K value of each flotation operation in the concentrator were calculated.The total flotation time of the concentrator reaches 84.08 min,and the K value of the flotation time is 4.00.The K value of rough sweep selection is 3.96 to 4.21 with an average of 4.10,and the K value of clean selection is 3.66 to 4.00 with an average of 3.81.After optimization,ore processing capacity increase by 204 t/d,gold concentrate concentration ratio decrease by 0.11 and gold recovery rate increase by 3.22% when the gold grade of raw ore decrease by 0.47 g/t.The research provides reference for the design of concentrator of the same type ore.

Key words: refractory gold ore, flotation time, amplification coefficient, process optimization, capacity, flotation performance

中图分类号: 

  • TD953

图1

某金矿选矿厂选矿试验工艺设计流程"

表1

某金矿选矿厂选矿试验指标设计"

选矿指标设计指标值
原矿金品位/(×10-63.64
精矿金品位/(×10-637.00
尾矿金品位/(×10-60.72
精矿产率/%11.11
金回收率/%82.42
金富集比10.16

图2

某金矿选矿工艺流程图"

表2

1 500 t/d浮选单系列工艺计算结果"

作业名称产率/%选厂浮选浓度/%浮选机有效容积/m3浮选时间/minK
设计试验选厂实际设计选厂实际
粗选153.4725.004012814.851.501.86
扫一108.1123.204012819.301.502.41
扫二94.9222.503212816.971.502.12
粗扫选小计112362451.121.502.13
精一33.9221.00121047.512.501.88
精二11.1120.0088310.362.673.45
精选小计2018717.872.572.55
累计132543168.991.742.23

表3

选厂达产后的生产指标"

选矿指标达产指标值
原矿金品位/(×10-62.77
精矿金品位/(×10-627.34
尾矿金品位/(×10-60.58
精矿产率/%8.20
金回收率/%80.94
金富集比9.87

图3

某金矿浓度试验流程图"

表4

不同浓度浮选试验结果"

浮选浓度/%金品位/(×10-6选矿指标
原矿精矿尾矿产率/%回收率/%金富集比
23.872.6728.120.617.4978.8610.53
25.112.8127.740.638.0479.389.87
28.082.7826.870.598.3380.559.67
29.242.7226.400.638.1178.729.71

表5

浮选时间试验"

浮选流程刮泡时间原矿金品位/(×10-6产品金品位/(×10-6作业产率/%累积产率/%作业回收率/%累积回收率/%
粗选第1 min2.7843.212.462.4638.2438.25
第2 min34.551.493.9518.5256.75
第3 min17.782.496.4415.9372.68
第4~5 min11.321.898.337.7080.38
第6~7 min5.210.248.570.4580.83
第8~9 min1.200.549.110.2381.06
扫一第1 min0.593.211.871.8710.1710.17
第2~3 min1.831.503.374.6514.82
第4~5 min1.721.594.954.6419.46
第6~7 min1.510.945.892.4121.87
扫二第1~2 min0.501.482.002.005.925.92
第3~4 min1.371.153.153.159.07
第5~7 min0.710.663.810.9410.01

图4

工艺优化闭路试验工艺流程图"

表6

优化试验选矿指标"

选矿指标优化后指标值
原矿金品位/(×10-62.36
精矿金品位/(×10-624.1
尾矿金品位/(×10-60.41
精矿产率/%8.23
金回收率/%84.06
金富集比10.21

表7

不同浮选浓度对浮选指标的影响试验结果"

浮选浓度/%实验室小型试验浮选时间/min选厂实际粗选时间/min选厂实际K金品位/(×10-6粗选作业指标
原矿精矿尾矿产率/%回收率/%金富集比
25.17521.714.342.3721.550.767.7470.429.09
27.16521.394.282.3123.410.727.0171.0210.13
29.54521.004.202.3922.170.697.9173.419.28
31.07520.754.152.3121.380.757.5669.999.26
33.17520.404.082.3320.220.778.0269.608.68

表8

不同充气量及浮选液位对浮选指标的影响试验结果"

浮选液位/%充气量/(m3·m-2·min-1

实验室小型试验

浮选时间/min

选厂实际浮选时间/min选厂实际K金品位/(×10-6粗选作业指标
原矿精矿尾矿产率/%回收率/%金富集比
752.90520.104.022.3220.550.718.1171.888.86
802.85521.444.292.3022.450.707.3671.809.76
852.83522.784.562.3423.000.757.1570.249.83
902.80524.124.822.3124.120.726.7970.9510.44
922.77524.664.932.3225.190.716.5871.4110.86

表9

不同矿石处理量对浮选指标的影响试验结果"

批次处理量/(t·d-1平均选矿参数金品位/(×10-6选矿指标
粗选浓度/%-74 μm含量/%原矿精矿尾矿产率/%回收率/%金富集比
11 65629.4171.192.3620.170.419.9184.528.55
21 68029.3571.172.1324.270.377.4084.1211.39
31 70429.2871.162.3022.450.408.6184.169.76
41 72829.3270.982.3724.090.428.2283.6210.16

表10

选厂最佳矿石处理量单系列浮选时间计算结果"

作业

名称

产率

/%

选厂浮选浓度/%实验室小型试验浮选时间/min选厂实际浮选时间/min选厂实际K
合计2184.084.00
粗选115.3229.28521.044.21
扫一103.2125.42519.823.96
扫二98.6625.37416.554.14
小计1457.424.10
精一30.6525.18414.653.66
精二8.6123.24312.014.00
小计726.663.81
Chen Mingjie, You Tengsheng, Sun Mingjun,et al,2018.Review of common flotation machines at home and abroad and problems needing attention in design and selection[J].China Mine Engineering,47(2):31-35.
Chen Xiaodong,2021.Principle and practice of enhanced flotation performance of fine particles by JRF micro-bubble flotaion machine[J].Nonferrous Metals(Mineral Processing Section),(1):112-116.
Deng Shengwei, Qi Zhongxu,2019.Discussion problems in industrialization process from small-scale mineral processing test results[J].Mining Research and Development,39(3):72-74.
Editorial Board of Mineral Processing Design Manual,1988.Mineral Processing Design Manual[M].Beijing:Metallurgical Industry Press.
Li Hong,2011.Selection calculation of beneficiation equipment(flotation machine)[J].Xinjiang Non-Ferrous Metals,(5):42-45.
Li Lei, Liu Zhihong,2014.Effect of ultrasonic treatment time on ash reduction by flotation of slime[J].Shandong Industrial Technology,(4):15,42.
Ichi Lijima, Liu Zongyan,1990.Study on the proportional coefficient of flotation time amplification[J].Foreign Metal Ore Dressing,(5):19-22.
Liu Jianzhong,2009.Experimental study on copper-nickel mixed flotation time of copper-nickel ore[J].Xinjiang Non-ferrous Metals,(5):42-45.
Liu Shouxin, Huang Jianfen, Shi Weihong,2010.Experimental study on beneficiation of a gold mine in Yunnan [J].Mining and Metallurgy,(1):33-35.
Qin Wu, Li Tongqi, Wang Nianfeng,et al,2018.Study on flotation process for improving grade and recovery of lithium mica concentrate[J].Foshan Ceramics,(8):27-31.
Shi Shuaixing, Zhang Yuejun, Han Dengfeng,et al,2013.Analysis of several problems in industrial selection of large flotation machine in China[J].Nonferrous Metals(Mineral Processing Section),(Supp.):199-201.
Tang Yisheng,2020.Mineral processing technique for a certain complex Pb-Zn-Sn polymetallic ore[J].Mining and Metallurgical Engineering,40(3):68-71.
Tian Yilan,2015.Experimental study on beneficiation of a gold mine in Yunnan [J].Mining and Metallurgy,24(2):15-18.
Yang Bo, Tong Xiong, Xie Xian,et al,2020.Study on the gold recovery from flotation tailings of a refractory gold ores in Gansu Province by a process combining mineral processing and metallurgy[J].Gold Science and Technology,28(2):285-292.
Yang Junlong, Guo Yanhua, Guo Haining,et al,2020.Experimental study on beneficiation process of carbonate refractory gold ore[J].Non-ferrous Metals(Mineral Processing Section),(1):42-47.
Yin Lu, Jin Zhenan, Yang Hongying,et al,2018.Present situation forecast of gold resources in China[J].Gold Science and Technology,28(2):17-24.
Yu Houfu, Shen Tao, Liu Qian,2020.Beneficiation practice of improving recovery rate of flotation column[J].Mining Engineering Research,35(1):69-73.
Yuan Linyang, Lu Shijie, Zhu Shenglin,et al,2020.Study on residence time distribition of pulp in flotation cell[J].Nonferrous Metals(Mineral Processing Section),(4):100-104.
Zhang Lixia,2002.Improvement of gold recovery of refractory gold flotation concentrate by continuous bioleleaching and thiourea leaching[J].Hydrometallurgy,21(3):142.
Zhao Tielin,2018.Transformation of ore dressing process of nanfen concentrator in beishan mining area[J].Metal Mine,(2):103-106.
Zhou Jianyue,2018.Research on flotation process and production practice of Ludouzhan gold-antimony ore [J].Hunan Non-ferrous Metals,34(1):20-25.
陈名洁,尤腾胜,孙明俊,等,2018.国内外常用浮选机综述及其设计选型中应注意的问题[J].中国矿山工程,47(2):31-35.
陈晓东,2021.精锐微泡浮选机强化微细粒浮选的机理与实践[J].有色金属(选矿部分),(1):112-116.
邓圣为,祁忠旭,2019.选矿小型试验成果工业化过程遇到的问题探讨[J].矿业研究与开发,39(3):72-74.
饭岛一,刘宗炎,1990.关于浮选时间放大比例系数的研究[J].国外金属矿选矿,(5):19-22.
李红,2011.选矿设备(浮选机)选择计算[J].新疆有色金属,(5):42-45.
李垒,刘志红,2014.超声处理时间对煤泥浮选降灰的影响[J].山东工业技术,(4):15,42.
刘建忠,2009.有关铜镍矿铜镍混合浮选时间的试验研究[J].新疆有色金属,(1):60-64.
刘守信,黄健芬,师伟红,2010.云南某金矿选矿试验研究[J].矿冶,(1):33-35.
秦伍,李同其,王念峰,等,2018.提高锂云母精矿品位及回收率的浮选工艺研究[J].佛山陶瓷,(8):27-31.
史帅星,张跃军,韩登峰,等,2013.浅析我国大型浮选机工业选型中几个问题[J].有色金属(选矿部分),(增):199-201.
唐义胜,2020.某复杂铅锌锡多金属选矿工艺试验研究[J].矿冶工程,40(3):68-71.
田祎兰,2015.云南某金矿选矿试验研究[J].矿冶,24(2):15-18.
《选矿设计手册》编委会,1988.选矿设计手册[M].北京:冶金工业出版社.
杨波,童雄,谢贤,等,2020.选冶联合提高甘肃某难浸金矿浮选尾矿金回收率的试验研究[J].黄金科学技术,28(2):285-292.
杨俊龙,郭艳华,郭海宁,等,2020.碳酸盐型难选金矿石选矿工艺流程试验研究[J].有色金属(选矿部分),(1):42-47.
殷璐,金哲男,杨红英,等,2018.我国黄金资源综合利用现状与展望[J].黄金科学技术,26(1):17-24.
余厚福,申滔,刘倩,2020.提高浮选柱作业回收率选矿实践[J].矿业工程研究,35(1):69-73.
袁琳阳,卢世杰,朱圣林,等,2020.浮选机内矿浆停留时间分布研究[J].有色金属(选矿部分),(4):100-104.
张丽霞,2002.利用连续生物浸出和硫脲浸出提高难处理浮选金精矿的金回收率[J].湿法冶金,21(3):142.
赵铁林,2018.南芬选矿厂处理北山采区矿石选矿工艺流程改造[J].金属矿山,(2):103-106.
周建月,2018.录斗艘金锑矿浮选工艺研究与生产实践[J].湖南有色金属,34(1):20-25.
[1] 衣成玉,裴英杰,马帅. 焦家金矿磨矿介质配比优化试验研究与应用[J]. 黄金科学技术, 2022, 30(1): 122-130.
[2] 李飞,陈自强. 青海某金矿选冶中试厂工艺设计优化及应用[J]. 黄金科学技术, 2020, 28(1): 142-147.
[3] 周贺鹏, 胡洁, 段朝阳, 邓攀, 钟志刚, 张永兵. 甘肃洛坝铅锌矿选矿流程考察与优化[J]. 黄金科学技术, 2019, 27(5): 696-703.
[4] 任琪,张国存,王广伟. 青海某金矿浮选药剂加药点及用量优化实践[J]. 黄金科学技术, 2017, 25(6): 68-74.
[5] 杨玮,王刚,曹欢,张凯. 含铜金精矿焙烧—酸浸对金、银浸出率的影响[J]. 黄金科学技术, 2017, 25(5): 122-126.
[6] 唐立靖,唐云,许正波. 难选金矿微波预处理边磨边浸非氰化试验研究[J]. 黄金科学技术, 2015, 23(1): 85-89.
[7] 王宝胜,杨守斌,高春国,王锐. 三山岛金矿新立分矿选矿厂磨矿分级系统改造与应用[J]. J4, 2010, 18(6): 51-53.
[8] 曾妙先. 金矿石品位和磨矿细度、浮选指标的关系研究[J]. J4, 2003, 11(4): 28-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!