img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (2): 222-232.doi: 10.11872/j.issn.1005-2518.2022.02.167

• 采选技术与矿山管理 • 上一篇    下一篇

冲击荷载作用下热处理花岗岩动态力学特性研究

周盛全1(),王瑞1,田诺成2,李栋伟3   

  1. 1.安徽理工大学土木建筑学院,安徽 淮南 232001
    2.衢州学院建筑工程学院,浙江 衢州 324000
    3.东华理工大学土木与建筑工程学院,江西 南昌 330013
  • 收稿日期:2021-11-12 修回日期:2022-02-21 出版日期:2022-04-30 发布日期:2022-06-17
  • 作者简介:周盛全(1975-),男,安徽安庆人,教授,从事岩土工程、城市地下空间工程理论与技术方面的研究工作。lqpzsq@163.com
  • 基金资助:
    国家自然科学基金项目“富水地层人工冻结帷幕融沉注浆渗透机理及注浆固结体本构模型研究”(41977236);“滨海软土地层人工冻结帷幕形成机理及蠕变损伤耦合本构模型研究”(41672278);江西省自然科学基金项目“河向冲积层人工冻结帷幕融沉注浆渗透机理及注浆固结体本构模型研究”(20192ACBL20002)

Research on Dynamic Mechanical Properties of Heat-treated Granite Under Impact Loading

Shengquan ZHOU1(),Rui WANG1,Nuocheng TIAN2,Dongwei LI3   

  1. 1.School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, Anhui, China
    2.College of Civil Engineering and Architecture, Quzhou University, Quzhou 324000, Zhejiang, China
    3.School of Civil and Architectural Engineering, East China University of Technology, Nanchang 330013, Jiang -xi, China
  • Received:2021-11-12 Revised:2022-02-21 Online:2022-04-30 Published:2022-06-17

摘要:

为研究冲击速度和热处理温度对黑云母花岗岩动态力学特性的影响,利用改进的霍普金森压杆系统对25~800 ℃共9个温度等级的热处理试样分别进行3种弹速下的冲击压缩试验。试验结果表明:随着冲击速度的增加,25~700 ℃热处理试样的应力—应变曲线由“Ⅱ型”转变为“Ⅰ型”,而800 ℃热处理试样均表现出“Ⅰ型”应力—应变曲线特征。同一温度热处理下试块的峰值应力、应变和平均应变均随动荷载的升高而增大。相同的冲击速度下,300 ℃热处理试样的动力学性能有所改善,500 ℃后试样的动力学性能开始逐渐劣化。同一温度热处理试样的破碎程度随冲击速度的增加而增加;相同冲击速度下,热处理试样的破碎程度随温度的升高先减弱后增强。

关键词: 花岗岩, 热处理, SHPB系统, 冲击速度, 动力学特性, 破坏模式

Abstract:

In order to study the influence of impact velocity and heat treatment temperature on the dynamic mechanical properties of biotite granite,the improved Hopkinson Pressure Bar system was used to conduct impact compression tests on the heat-treated granite at 25~800 ℃ under three impact velocities.The experiment results show that with the impact velocity increasing,the stress-strain curves of the heat-treated samples at 25~700 ℃ change from “type Ⅱ” to “type Ⅰ”.But the heat-treated samples at 800 ℃ all show the “type Ⅰ” stress-strain curve.The peak stress,average strain and peak strain of the sample at the same temperature increase with the impact velocity increasing,showing obvious loading rate effect.The elastic modulus does not change much with the impact velocity,and the loading rate effect is not obvious.Under the same impact velocity,the dynamic properties of the heat-treated samples at 300 ℃ are improved.After 500 ℃,the dynamic properties of the samples begin to gradually deteriorate,and the heat-treated samples at 800 ℃ have the weakest dynamic properties.The relationship between peak stress,average strain rate,peak strain and elastic modulus and heat treatment temperature can be expressed by single exponential function.Under the same treatment temperature,the damage degree of granite increases with the increase of impact velocity.Under the same impact velocity,the fragmentation degree of the heat-treated sample at 300 ℃ is the smallest,and the heat-treated sample at 800 ℃ is the most serious.From the field emission scanning electron microscope image,it can be seen that the fundamental reason for the change of rock macro mechanical properties is that the temperature changes the microstructure inside the rock.

Key words: granite, heat treatment, SHPB system, impact velocity, dynamic characteristics, failure mode

中图分类号: 

  • TU458

图1

黑云母花岗岩XRD图"

图2

热处理后花岗岩试样"

图3

改进的SHPB系统"

图4

应力均衡图"

图5

3种弹速下不同温度热处理试样的应力—应变曲线"

图6

不同弹速下峰值应力与温度的关系"

图7

不同弹速下平均应变率与温度的关系"

图8

不同弹速下峰值应变与温度的关系"

图9

不同弹速下弹性模量与温度的关系"

图10

3种弹速下碎片形态随温度的变化"

图11

热处理后花岗岩场发射扫描电子显微镜图像"

Chen Y L, Ni J, Shao W,et al,2012.Experimental study on the influence of temperature on the mechanical properties of granite under uniaxial compression and fatigue loading[J].International Journal of Rock Mechanics and Mining Sciences,56(15):62-66.
Clover P W J, Baud P, Darot M,et al,1995.α/β phase transition in quartz monitored using acoustic emis sons[J].Geophysical Journal of the Royal Astronomical Society,120:775-782.
Dai F, Huang S, Xia K W,et al,2010.Some fun damental issues in dynamic compression and tension tests of rocks using Split Hopkinson Pressure Bar[J].Rock Mechanics and Ro-ck Engineering,43(6):657-666.
Frew D J, Forrestal M J, Chen W,2001.A split Hop-kinson pressure bar technique to determine compressive stress-strain data for rock materials[J].Experimental Mechanics,41(1):40-46.
He Manchao, Guo Pingye,2013.Deep rock mass thermody namic effect and temperature control measures[J].Chinese Journal of Rock Mechanics and Engineering,32(12):2377-2393.
Huang S, Xia K W,2015.Effect of heat-treatment on the dynamic compressive strength of Longyou sand stone[J].Engine-ering Geology,191:1-7.
Huang Y H, Yang S Q, Tian W L,et al,2017. Physical and mechanical behavior of granite containing pre-existing holes after high temperature treat ment[J]. Archives of Civil and Mechanical Engineering, 17: 912-925.
ISRM(International Society for Rock Mechanics),1975. Commission on terminology,symbols and graphic representation [S].Lisbon,Portugal:ISRM.
Li Ming, Mao Xianbiao, Cao Lili,et al,2014.Experimental study of mechanical properties on strain rate effect of sandstones after high temperature[J].Rock and Soil Mechanics,35(12): 3479-3488.
Li X B, Lok T S, Zhao J,et al,2000.Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress-strain curves for rocks[J].International Journal of Rock Mechanics and Mining Sciences,37(7): 1055-1060.
Li Xibing,2014.Rock Dynamics Fundamentals and Applications[ M].Beijing:Science Press.
Liu S, Xu J Y,2015.Effect of strain rate on the dynamic compressive mechanical behaviors of rock material subjected to high temperatures[J].Mechanics of Mate rials,82:28-38.
Liu Shi, Xu Jinyu,2014.Effect of high temperature on dynamic compressive mechanical properties of granite[J].Journal of Vibration and Shock,33(4):195-198.
Lok T S, Li X B, Liu D,et al,2002.Testing and response of large diameter brittle materials subjected to high strain rate[J].Journal of Materials in Civil Engineering,14(3): 262-269.
Lu C, Sun Q, Zhang W Q,et al,2017.The effect of high temperature on tensile strength of sandstone[J]. Applied Thermal Engineering,111:573-579.
Mahanta B, Singh T N, Ranjith P G,2016.Influence of ther mal treatment on mode Ⅰ fracture toughness of certain Indian rocks[J].Engineering Geology,210:103-114.
Wu G, Wang Y, Swift G,et al,2013.Laboratory investiga tion of the effects of temperature on the mechanical properties of sandstone[J].Geotechnical and Geological Engineering,31(2):809-816.
Wu Gang, Wang Deyong, Zhai Songtao,2012.Acoustic emission characteristics of sandstone after high temperature under uniaxial compression[J].Rock and Soil Mechanics, 33(11): 3237-3242.
Xie Heping, Gao Feng, Ju Yang,2015.Research and develop ment of rock mechanics in deep ground engineering [J].Chinese Journal of Rock Mechanics and Engineering,34(11): 2161-2178.
Xu Jinyu, Liu Shi,2013.Effect of impact velocity on dynamic mechanical behaviors of marble after high temperatures [J]. Chinese Journal of Geotechnical Engineering, 35(5):879-883.
Xu Jinyu, Xiaocong Lü, Zhang Jun,2010.Research on energy prop erties of rock cyclical impact damage under confining pressure[J].Chinese Journal of Rock Mechanics and Engineering,29(Supp.2):4159-4165.
Yang Liyun, Wang Qingcheng, Ding Chenxi,et al,2020.Experimental analysis on the mechanism of slot ting blasting in deep rock mass[J].Journal of Vibra tion and Shock,39(2):40-46.
Yin Guangzhi, Li Xiaoshuang, Zhao Hongbao,2009. Exper imental investigation on mechanical properties of coarse sandstone after high temperature under conven tional triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 28(3): 598-604.
Yin Tubing, Li Xibing, Zhou Zilong,et al,2007.Study on mechanical properties of post-high-temperature sand-stone[J].Chinese Journal of Underground Space and Engineering,3(6):1060-1063.
Zhang Y L, Zhao G F, Li Q,2020.Acoustic emis sion uncovers thermal damage evolution of rock[J].International Journal of Rock Mechanics and Mining Sciences,132:104388.
Zhou Y X, Xia K, Li X B,et al,2012.Suggested methods for determining the dynamic strength parameters and Mode-I fracture toughness of rock materials[J].International Jou-rnal of Rock Mechanics and Mining Sciences,49:105-112.
何满潮,郭平业,2013.深部岩体热力学效应及温控对策[J].岩石力学与工程学报,32(12):2377-2393.
李明,茅献彪,曹丽丽,等,2014.高温后砂岩动力特性应变率效应的试验研究[J].岩土力学,35(12):3479-3488.
李夕兵,2014.岩石动力学基础与应用[M].北京:科学出版社.
刘石,许金余,2014.高温作用对花岗岩动态压缩力学性能的影响研究[J].振动与冲击,33(4):195-198.
吴刚,王德咏,翟松韬,2012.单轴压缩下高温后砂岩的声发射特征[J].岩土力学,33(11):3237-3242.
谢和平,高峰,鞠杨,2015.深部岩体力学研究与探索[J].岩石力学与工程学报,34(11):2161-2178.
许金余,刘石,2013.加载速率对高温后大理岩动态力学性 能的影响研究[J].岩土工程学报,35(5):879-883.
许金余,吕晓聪,张军,2010.围压条件下岩石循环冲击损伤的能量特性研究[J].岩石力学与工程学报,29(增2):4159-4165.
杨立云,王青成,丁晨曦,等,2020.深部岩体中切槽爆破机理实验分析[J].振动与冲击,39(2):40-46.
尹光志,李小双,赵洪宝,2009.高温后粗砂岩常规三轴压缩条件下力学特性试验研究[J].岩石力学与工程学报,28(3):598-604.
尹土兵,李夕兵,周子龙,等,2007.粉砂岩高温后动态力学特性研究[J].地下空间与工程学报,3(6):1060-1063.
[1] 冼源宏,詹华思,李健唐. 广东怀集地区矽卡岩型铁多金属矿床同位素地球化学特征及其地质意义[J]. 黄金科学技术, 2021, 29(6): 805-816.
[2] 范晓冬,李响,陶明,尹土兵,李夕兵. 不同热冲击过程花岗岩I型和Ⅱ型断裂特性研究[J]. 黄金科学技术, 2021, 29(6): 834-842.
[3] 李柏锦,李响,王彦,尹土兵,李夕兵. 温度冲击对花岗岩动态拉伸力学性能的影响[J]. 黄金科学技术, 2021, 29(4): 545-554.
[4] 胡建华,董喆喆,马少维,秦亚光,徐晓,代转. 应力—渗流耦合作用下损伤岩石渗流特性[J]. 黄金科学技术, 2021, 29(3): 355-363.
[5] 杜坤,杨颂歌,苏睿,杨成志,王少锋. 不同应力条件下硬岩强度与破裂特性试验研究[J]. 黄金科学技术, 2021, 29(3): 372-381.
[6] 戴兵, 单启伟, 罗鑫尧, 薛永明. 含孔洞岩石在静应力下的循环冲击试验研究[J]. 黄金科学技术, 2020, 28(4): 531-540.
[7] 陈昊然,曹平,冉龙威. 含齿形裂隙类岩石材料单轴压缩试验研究[J]. 黄金科学技术, 2019, 27(3): 398-405.
[8] 陈静,胡继春,逯永卓,卢世银,王树林,徐贝贝. 东昆仑小灶火地区钼矿化正长花岗岩年代学、地球化学特征及其地质意义[J]. 黄金科学技术, 2018, 26(4): 465-472.
[9] 侯江龙,李建康,王登红,陈振宇,代鸿章,刘丽君. 四川甲基卡锂矿区花岗岩体中黑云母的地球化学特征及其地质意义[J]. 黄金科学技术, 2017, 25(6): 1-8.
[10] 高帅,曾庆栋,于昌明,邢宝山,荆林海,叶杰,范宏瑞,杨奎锋. 遥感及综合物探方法用于山东招远南部隐伏成矿侵入体的空间定位[J]. 黄金科学技术, 2017, 25(5): 1-10.
[11] 李太兵,李永光,易建春. 湖南曲溪金矿床成矿作用及成矿物质来源探讨[J]. J4, 2012, 20(4): 104-108.
[12] 杨晋升,阎书杰,张殿龙,刘文化,张瑞忠,张涛. 山东埠上金矿床花岗岩、脉岩与金成矿关系研究[J]. J4, 2011, 19(2): 52-55.
[13] 张涛, 肖小强. 北祁连宁缠河地区花岗岩地球化学特征[J]. 黄金科学技术, 2011, 19(1): 6-10.
[14] 刘远华, 杨贵才, 张轮, 齐金忠, 李文良. 西秦岭阳山超大型金矿床花岗岩岩石地球化学特征[J]. J4, 2010, 18(6): 1-7.
[15] 尹西君. 乌云盆地林海花岗岩体地球化学特征及其与成矿的关系[J]. J4, 2010, 18(5): 47-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!