img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2022, Vol. 30 ›› Issue (1): 93-104.doi: 10.11872/j.issn.1005-2518.2022.01.127

• 采选技术与矿山管理 • 上一篇    下一篇

基于链式变精度粗糙模糊集采场内因火灾分析

杨珊(),袁鸣珂,苏凯俊,徐梓桐   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2021-09-14 修回日期:2021-11-13 出版日期:2022-02-28 发布日期:2022-04-25
  • 作者简介:杨珊(1983-),男,湖北监利人,副教授,从事矿业经济与采矿系统工程研究工作。1652102421@qq.com
  • 基金资助:
    国家自然科学基金青年基金项目“基于人工智能的矿山技术经济指标动态优化”(51404305);国家自然科学基金项目“基于属性驱动的矿体动态建模及更新方法研究”(51504286)

Analysis of Internal-caused Fire in the Stopes Based on Chain Variable Preci-sion Rough Fuzzy Set

Shan YANG(),Mingke YUAN,Kaijun SU,Zitong XU   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2021-09-14 Revised:2021-11-13 Online:2022-02-28 Published:2022-04-25

摘要:

针对地下矿山采场内因火灾影响因素多且复杂,涵盖自燃起火与火灾后果多个层面的情况,综合考虑矿石含硫量、含碳量和矿石温度等因素,建立了采场内因火灾多层面分析的指标体系,构建以影响指标为条件属性和以采场内因火灾自燃起火及火灾后果为决策属性的链式变精度粗糙集模型。对采场内因火灾的自燃起火可能性及火灾后果严重性进行了链式关联决策分析,得到了9条置信度为55%以上的采场内因火灾自燃起火决策规则及5条置信度为50%以上的采场内因火灾后果的决策规则。根据链式因果关系对两类规则进行归并整合,得到了采场内因火灾涵盖起因与后果的组合规律。结果表明:该方法能够科学全面地分析采场内因火灾等存在链式关联层面的不确定概率性问题,为矿山预判、应对采场内因火灾及保障安全生产提供了指导。

关键词: 采场, 内因火灾, 粗糙模糊集, 变精度, 知识约简链式关联, 矿山安全生产

Abstract:

The sulpfur content of ores in an underground pyrrhotite is nearly 50%.Internal-caused fires are prone to happen in such mines because of ore spontaneous combustion,and the internal-caused fire has become a major hidden danger to the sofety production of mine enterprises.In the underground mine stopes,there are many complex factors affecting the internal-caused fire.It covers multiple levels of the situation about cause and effects of the fire in the stopes.Considering 9 influencing factors such as sulfur content and temperature of ore, the impact indicators,probabilities of spontaneous combustion and its results of the internal-caused fire in the typical stopes of the mine were statistically analyzed.Then a multi-level analysis index system for fire in the stopes was constructed,and the knowledge system of rough fuzzy set was established.The condition attribute of the model is the impact indicators of internal-caused fire,and the decision attribute of the model are consequences severity and judgement result of spontaneous combustion of internal-caused fire in the stopes.For the above two kinds of knowledge systems,the sample object sets of the stope is divided into classes by equivalence partitioning according to condition attributes and decision attributes.The classification quality of the conditional attribute set of the spontaneous combustion knowledge system and fire consequences knowledge system is 70% and 67% respectively.Then,the conditional attribute set is reduced by using the theory of variable precision rough fuzzy set.After a chain correlation decision-making analysis which contained the possibility of spontaneous combustion and the severity of the internal-caused fire consequences in the stopes,9 decision-making rules for spontaneous fire with a confidence level above 55% were obtained,and 5 decision-making rules for fire consequences in the stopes were also obtained with a confidence level above 50%.According to the cause-effect chain,the two classes of rules were merged and integrated,and 30 combination rules of the cause and effect of the internal-caused fire in the stopes were obtained.Examples show that this method can analyzes the problems scientifically and comprehensively,with uncertain probability of chain-related correlation levels such as internal-caused fire in the stopes.It can also provide guidance for mine analysis and response to fires in the stopes to ensure sofety production.At the same time,this method also reduces the probability of internal-caused fire in the stope of some mine enterprises.

Key words: stope, internal-caused fire, rough fuzzy set, variant precision, knowledge reduction chain association, mine safety production

中图分类号: 

  • X43

图1

系统建模流程图"

表1

采场内因火灾影响指标统计"

采场编号矿石含硫量/%矿石含碳量/%氧气浓度/%采场湿度/%矿石温度/℃矿石堆放时间/h采场人员数量/人采场空间面积 /m2采场矿层厚度 /m
1#41.213.319.26328.56277203.4
2#31.97.718.67125.282145706.1
3#22.412.820.18228.857117303.1
4#22.43.818.96222.84748907.6
5#23.32.320.98527.93941 0506.5
6#43.411.919.76827.25598804.5
7#35.14.419.37422.85971 0208.1
8#31.46.118.88126.56487306.8
9#28.24.318.36723.72738108.9
10#22.711.920.58427.361136304.7
11#22.47.818.36822.847114606.6
12#34.67.919.58222.267124103.7
13#32.412.319.28421.83768104.2
14#21.94.718.56422.43947707.3
15#35.74.919.17521.55889907.4
16#38.55.718.27526.87966905.9
17#31.38.719.88623.663145703.9
18#28.84.120.38128.24331 1305.2
19#28.89.118.47723.43397705.2
20#22.412.320.78727.266127504.3
21#37.38.318.48624.557125005.8
22#28.33.320.18627.64251 1805.1
23#37.113.419.56922.57968103.7
24#34.39.218.17826.69278406.1
25#33.93.819.87722.26999308.6
26#37.86.618.98524.96386706.8
27#46.011.119.56228.77176504.9
28#21.33.118.17522.85658207.8
29#37.24.719.67123.56661 1408.7
30#32.86.219.78223.761115204.9

表2

采场内因火灾结果统计"

采场编号自燃起火概率/%自燃起火判定火灾后果概率/%火灾后果判定
不自燃概率自燃概率严重一般严重不严重
1#26.373.7倾向自燃19.252.428.4一般严重
2#38.661.4倾向自燃22.359.118.6一般严重
3#41.658.4倾向自燃69.117.513.4严重
4#66.133.9不易自燃17.920.661.5不严重
5#54.345.7不易自燃20.532.147.5不严重
6#24.175.9倾向自燃16.361.322.4一般严重
7#58.741.3不易自燃13.433.253.4不严重
8#43.156.9倾向自燃24.955.219.9一般严重
9#62.837.2不易自燃8.525.466.1不严重
10#43.156.9倾向自燃63.819.716.5严重
11#60.939.1不易自燃22.253.724.1一般严重
12#60.139.9不易自燃44.333.222.5严重
13#55.244.8不易自燃19.562.418.1一般严重
14#61.938.1不易自燃14.323.362.4不严重
15#51.848.2不易自燃19.430.949.7不严重
16#31.268.8倾向自燃20.157.122.8一般严重
17#61.438.6不易自燃47.233.719.1严重
18#56.443.6不易自燃20.227.552.3不严重
19#52.947.1不易自燃24.849.325.9一般严重
20#45.754.3倾向自燃64.221.614.2严重
21#40.959.1倾向自燃17.758.823.5一般严重
22#52.347.7不易自燃21.929.548.6不严重
23#41.858.2倾向自燃25.057.617.4一般严重
24#34.765.3倾向自燃24.147.728.2一般严重
25#57.342.7不易自燃21.331.547.2不严重
26#42.857.2倾向自燃21.158.420.5一般严重
27#27.672.4倾向自燃21.355.922.8一般严重
28#61.738.3不易自燃13.822.63.7不严重
29#51.248.8不易自燃21.131.147.8不严重
30#63.336.7不易自燃50.930.418.7严重

表3

自燃起火粗糙模糊知识系统"

采场

U

条件属性C1决策属性D1决策隶属度
c1c2c3c4c5c6d1不易自燃倾向自燃
n1倾向自燃0.2630.737
n2倾向自燃0.3860.614
n3倾向自燃0.4160.584
n4不易自燃0.6610.339
n5不易自燃0.5430.457
n6倾向自燃0.2410.759
n7不易自燃0.5870.413
n8倾向自燃0.4310.569
n9不易自燃0.6280.372
n10倾向自燃0.4310.569
n11不易自燃0.6090.391
n12不易自燃0.6010.399
n13不易自燃0.5520.448
n14不易自燃0.6190.381
n15不易自燃0.5180.482
n16倾向自燃0.3120.688
n17不易自燃0.6140.386
n18不易自燃0.5640.436
n19不易自燃0.5290.471
n20倾向自燃0.4570.543
n21倾向自燃0.4090.591
n22不易自燃0.5230.477
n23倾向自燃0.4180.582
n24倾向自燃0.3470.653
n25不易自燃0.5730.427
n26倾向自燃0.4280.572
n27倾向自燃0.2760.724
n28不易自燃0.6170.383
n29不易自燃0.5120.488
n30不易自燃0.6330.367

表4

火灾后果粗糙模糊知识系统"

采场U条件属性C2决策属性D2决策隶属度
c2c3c7c8c9d2严重一般严重不严重
n1一般严重0.1920.5240.284
n2中厚一般严重0.2230.5910.186
n3严重0.6910.1750.134
n4不严重0.1790.2060.615
n5中厚不严重0.2050.3210.475
n6一般严重0.1630.6130.224
n7不严重0.1340.3320.534
n8中厚一般严重0.2490.5520.199
n9不严重0.0850.2540.661
n10严重0.6380.1970.165
n11中厚一般严重0.2220.5370.241
n12严重0.4430.3320.225
n13一般严重0.1950.6240.181
n14不严重0.1430.2330.624
n15不严重0.1940.3090.497
n16中厚一般严重0.2010.5710.228
n17严重0.4720.3370.191
n18中厚不严重0.2020.2750.523
n19中厚一般严重0.2480.4930.259
n20严重0.6420.2160.142
n21中厚一般严重0.1770.5880.235
n22中厚不严重0.2190.2950.486
n23一般严重0.250.5760.174
n24中厚一般严重0.2410.4770.282
n25不严重0.2130.3150.472
n26中厚一般严重0.2110.5840.205
n27一般严重0.2130.5590.228
n28不严重0.1380.2250.637
n29不严重0.2110.3110.478
n30严重0.5090.3040.187

表5

自燃起火知识系统粗糙隶属度"

等价类决策类等价类决策类
F1F2F1F2
X100.740X80.6090
X200.652X90.6160
X300.565X100.5220
X40.6360X110.5290
X50.5430X1200.582
X60.5480X130.6170
X700.577

表6

火灾后果知识系统粗糙隶属度"

等价类决策类等价类决策类
F1F2F3F1F2F3
Y100.5790Y5000.495
Y200.5720Y6000.495
Y30.65700Y700.5350
Y4000.634Y80.47500

表7

自燃起火β-约简概率决策规则"

规则支持数置信度/%
if矿石含硫量=高and矿石含碳量=高and矿石温度=高and矿石堆放时间=中then采场矿石=倾向自燃374.0
if矿石含硫量=中and矿石含碳量=中and矿石温度=中and矿石堆放时间=长then采场矿石=倾向自燃365.2
if矿石含硫量=低and矿石含碳量=高and矿石温度=高and矿石堆放时间=中then采场矿石=倾向自燃356.5
if矿石含硫量=低and矿石含碳量=低and矿石温度=低and矿石堆放时间=短then采场矿石=不易自燃363.6
if矿石含硫量=中and矿石含碳量=中and矿石温度=中and矿石堆放时间=中then采场矿石=倾向自燃357.7
if矿石含硫量=低and矿石含碳量=中and矿石温度=低and矿石堆放时间=短then采场矿石=不易自燃160.9
if矿石含硫量=中and矿石含碳量=中and矿石温度=低and矿石堆放时间=中then采场矿石=不易自燃361.6
if矿石含硫量=中and矿石含碳量=高and矿石温度=低and矿石堆放时间=长then采场矿石=倾向自燃158.2
if矿石含硫量=低and矿石含碳量=低and矿石温度=低and矿石堆放时间=中then采场矿石=不易自燃161.7

表8

火灾后果β-约简概率决策规则"

规则支持数置信度/%
if氧气浓度=中and采场人员数量=中then采场内因火灾=一般严重557.9
if氧气浓度=低and采场人员数量=多then采场内因火灾=一般严重357.2
if氧气浓度=高and采场人员数量=多then采场内因火灾=严重365.7
if氧气浓度=低and采场人员数量=少then采场内因火灾=不严重463.4
if氧气浓度=低and采场人员数量=中then采场内因火灾=一般严重553.5

表9

采场内因火灾规律"

知识系统编号规律支持数置信度/%

自燃起火

知识系统

Aif矿石含硫量=高and矿石含碳量=高and矿石温度=高and矿石堆放时间=中then采场矿石=倾向自燃374.0
Bif矿石含硫量=中and矿石含碳量=中and矿石温度=中and矿石堆放时间=长then采场矿石=倾向自燃365.2
Cif矿石含硫量=低and矿石含碳量=高and矿石温度=高and矿石堆放时间=中then采场矿石=倾向自燃356.5
Dif矿石含硫量=低and矿石含碳量=低and矿石温度=低and矿石堆放时间=短then采场矿石=不易自燃363.6
Eif矿石含硫量=中and矿石含碳量=中and矿石温度=中and矿石堆放时间=中then采场矿石=倾向自燃357.7
Fif矿石含硫量=中and矿石含碳量=中and矿石温度=低and矿石堆放时间=中then采场矿石=不易自燃361.6

火灾后果

知识系统

if氧气浓度=中and采场人员数量=中then采场内因火灾=一般严重557.9
if氧气浓度=低and采场人员数量=多then采场内因火灾=一般严重357.2
if氧气浓度=高and采场人员数量=多then采场内因火灾=严重365.7
if氧气浓度=低and采场人员数量=少then采场内因火灾=不严重463.4
if氧气浓度=低and采场人员数量=中then采场内因火灾=一般严重553.5
Chen Jianhong, Zheng Haili, Liu Zhenxiao, al et,2011.Rough sets of laneway supporting schemes evaluation system based on dominance relation[J].Journal of Central South University (Science and Technology),42(6):1698-1703.
Huang Yuejun,2000.Study on the spontaneous combustion of high temperature sulphride ores and its control technology[J].Non-ferrous Mining and Metallurgy,16(1):13-15.
Jian Lirong,2008.Facing the Heterozygous Uncertainty Decision-Making Rough Set Method and Its Application[M].Beijing:Science Press.
Li Mengmeng, Xu Weihua,2016.Rough fuzzy set of logical and operation of variable precisionand grade based on dominance relation[J].Journal of Frontiers of Computer Science and Technology,10(2):277-284.
Li Pengfei,2010.Internal fire in sulfide mine of Laochang mine and prevention[J].Popular Science&Teconology,(5):93-95.
Li Zijun,2006.Investigation on the Mechanism of Spontaneous Combustion of Sulphide Ores and the Key Technologies for Preventing Fire[D].ChangSha:Central South University.
Li Zijun, Gu Desheng, Wu Chao,2004.Dangerousness assessment of ore spontaneous combustion in high temperature high sulfur deposits[J].Metal Mine,(5):57-64.
Liu Tongming,2001.Data Mining Technology and Its Application[M].Beijing:National Defense Industry Press.
Liu Yong, Jian Lirong, Jeffrey F, al et,2013.Probabilistic decision method and application based on the hybrid model of grey clustering and variable precision rough fuzzy set[J].Journal of Industrial Engineering and Engineering Management,27(3):110-115,123.
Luo Kai, Wu Chao, Yang Fuqiang,2014.Management response system to ores spontaneous combustion based on dominance-based rough sets and grey target[J].Journal of Central South University(Science and Technology),45(1):224-230.
Mao Dan, Chen Yuanjiang,2008.Characteristic overview and analysis of spontaneous combustion of sulfide ores[J].Industrial Minerals and Processing,(1):34-38.
Wang Ling, Hu Pei,2009.Algorithms for knowledge acquisition in decision-making system based on rough sets theory andits positive analysis[J].Journal of Intelligence,28(3):144-147.
Wang Guoying,2001.Rough Sets Theory and Knowledge Acquisition[M].Xi'an:Xi'an Jiaotong University Press.
Wang Pinglong,1999.In site test and investigation on sulphide ore spontaneous ignition[J].Chemical Mineral and Processing,(5):8-11.
Wu C, Li Z J,2005.A simple method for predicting the spontaneous combustion potential of sulfide ores at ambient[J].Transaction of Mining and Metallurgy Institute,112(2):125-128.
Wu Shunxiang,2009.Gray Rough Set Model and Its Application[M].Beijing:Science Press.
Xu Chunming, Wu Chao, Chen Yuanjiang,2008.Grey system approach in application to the diction of spontaneous combustion of sulfide ore residue[J].Tomnal of Safety and Environment,8(4):125-127.
Yang Fuqiang,2011.Study on the Mechanism and Forecasting Technologies for Spontaneous Combustion of Sulfied Minerails in Metal Mines[D].Changsha:Central Sounth University.
Yuan Xiujiu, He Huacan,2006.Exploring judgment theorems and discernibility matrices useful in discovering valuable but hidden information from a certain class of decision tables[J].Journal of Northwestern Polytechnical University,24(5):604-608.
Zhang W X,2010.Incomplete information system and its optimal selection[J].Computer and Mathematics with Application,48(5):691-698.
Zhang Wenxiu, Qiu Guofang,2005.Based on Rough Sets of Uncertain Decision[M].Beijing:Tsinghua University Press.
陈建宏,郑海力,刘振肖,等,2011.基于优势关系的粗糙集的巷道支护方案评价体系[J].中南大学学报(自然科学版),42(6):1698-1703.
黄跃军,2000.高温高硫矿床矿石自燃性及防治技术研究[J].有色矿业,16(1):13-15.
菅利荣,2008.面向不确定性决策的杂合粗糙集方法及其应用[M].北京:科学出版社.
李蒙蒙,徐伟华,2016.优势关系下变精度与程度“逻辑且”粗糙模糊集[J].计算机科学与探索,10(2):277-284.
李鹏飞,2010.老厂矿的硫化矿内因火灾及其防治[J].大众科技,(5):93-95.
李孜军,2006.硫化矿石自燃机理及其预防关键技术研究[D].长沙:中南大学.
李孜军,古德生,吴超,2004.高温高硫矿床矿石自燃危险性的评价[J].金属矿山,(5):57-64.
刘同明,2001.数据挖掘技术及其应用[M].北京:国防工业出版社.
刘勇,菅利荣, Jeffrey F,等,2013.杂合灰色聚类与变精度粗糙模糊集的概率决策方法及应用[J].管理工程学报,27(3):110-115,123.
罗凯,吴超,阳富强,2014.基于优势关系粗糙集与灰靶决策的矿石自燃管理应对体系[J].中南大学学报(自然科学版),45(1):224-230.
毛丹,陈沅江,2008.硫化矿石堆氧化自燃全过程特征综述与分析[J].化工矿物与加工,(1):34-38.
汪凌,胡培,2009.基于粗糙集的决策系统知识获取算法及实证分析[J].情报杂志,28(3):144-147.
王国胤,2001.Rough集理论与知识获取[M].西安:西安交通大学出版社.
王坪龙,1999.硫化矿石自燃发火规律现场试验研究[J].化工矿物与加工,(5):8-11.
吴顺详,2009.灰色粗糙集模型及其应用[M].北京:科学出版社.
许春明,吴超,陈沅江,2008.硫化矿石堆自燃的灰色预测研究[J].安全与环境学报,8(4):125-127.
阳富强,2011.金属矿山硫化矿自然发火机理及其预测预报技术研究[D].长沙:中南大学.
袁修久,何华灿,2006.优势关系下的相容约简和下近似约简[J].西北工业大学学报,24(5):604-608.
张文修,仇国芳,2005.基于粗糙集的不确定决策[M].北京:清华大学出版社.
[1] 徐路路,张钦礼,冯如. 基于采场结构参数优化后的充填体强度数值模拟[J]. 黄金科学技术, 2021, 29(3): 421-432.
[2] 苏怀斌, 张钦礼, 张德明, 曾长根, 朱晓江. 穰家垅银矿大规模充填采矿采场结构参数优化研究[J]. 黄金科学技术, 2020, 28(4): 550-557.
[3] 赵国彦,李振阳,代俊成. 基于Vague-RSM-AFSA模型的采场结构参数优化研究[J]. 黄金科学技术, 2019, 27(4): 497-504.
[4] 万串串,陈国良,周高明,于世波,解联库,唐细卓. 基于不同岩体稳固级别的地下采场结构参数优化[J]. 黄金科学技术, 2018, 26(6): 761-770.
[5] 胡建华,任启帆,亓中华,张纪伟. 卧虎山铁矿采场极限暴露面积回归优化模型[J]. 黄金科学技术, 2018, 26(4): 503-510.
[6] 吴昊, 陈炳瑞, 池秀文, 王搏, 徐世达, 姜洪波. 基于区域性微震活动的深部采场稳定性分析[J]. 黄金科学技术, 2018, 26(3): 325-333.
[7] 康虔,张钦礼,张楚旋,蒲成志,蒋复量. 理想点法在采场结构参数优化中的应用[J]. 黄金科学技术, 2018, 26(1): 25-30.
[8] 孟坤,罗周全,秦亚光. 复杂开采环境下采场位移失稳过程研究[J]. 黄金科学技术, 2017, 25(2): 70-75.
[9] 唐礼忠,邓丽凡,翦英骅. 分段空场嗣后充填采矿法采场结构参数优化研究[J]. 黄金科学技术, 2016, 24(2): 8-13.
[10] 牛勇,李克钢. 房柱采矿法采场结构参数优化理论研究及应用[J]. 黄金科学技术, 2015, 23(6): 75-80.
[11] 龙科明,王李管. 基于ANSYS-R法的采场结构参数优化[J]. 黄金科学技术, 2015, 23(6): 81-86.
[12] 万孝衡,王新民,朱阳亚,姜志良,陈秋松. 基于组合赋权TOPSIS法的采场结构参数优选[J]. 黄金科学技术, 2014, 22(5): 69-73.
[13] 邱福胜,尹春伟,刘成杰,王进艳,王韶庆. 新型遥控刮板式放矿机设计及应用[J]. 黄金科学技术, 2014, 22(2): 67-69.
[14] 张奇, 王利, 王晓青. 静态留矿法设计与施工技术问题探讨[J]. J4, 2009, 17(1): 49-52.
[15] 谭学军, 吴天秋. 关于采场测量方法及其准确率之研究[J]. J4, 2005, 13(1-2): 25-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨龙伟, 杨兴科, 高雅宁, 何虎军, 褚娜娜, 张正民. 南秦岭汉阴县长沟金矿床三维模型与定位预测[J]. 黄金科学技术, 2018, 26(3): 270 -278 .
[2] 杨超,郭利杰,王劼,史采星,许文远. 某金矿大倍线加压充填技术研究与应用[J]. 黄金科学技术, 2019, 27(1): 89 -96 .
[3] 田睿,孟海东,陈世江,王创业,孙德宁,石磊. 基于机器学习的3种岩爆烈度分级预测模型对比研究[J]. 黄金科学技术, 2020, 28(6): 920 -929 .
[4] 谢玉华,高华,张哲,杨亮,柯新星,刘晓敏,罗建镖,刘琦,许坤林,刘继顺,王智琳,孔华,刘飚. 湖南通道地区金矿床成矿流体特征及成矿物质来源:来自流体包裹体、H-O-S同位素的证据[J]. 黄金科学技术, 2021, 29(1): 74 -89 .
[5] 盛建龙, 翟明洋. 基于随机响应面法的金鸡岭岩质边坡可靠度分析及抽样方法对比[J]. 黄金科学技术, 2018, 26(3): 297 -304 .
[6] 秦运忠, 宋海军. 广西乐业县岩旦—岩堂金矿床找矿模型及成矿预测[J]. 黄金科学技术, 2020, 28(3): 317 -327 .
[7] 胡金山, 胡福林, 刘金刚, 李宁, 胡国柳, 王国光. 江西银山铜多金属矿深部找矿与成矿特征[J]. 黄金科学技术, 2020, 28(5): 688 -700 .
[8] 何建元,李宏业,高谦,尹升华. 采矿废石—尾砂混合骨料在下向分层进路胶结充填采矿中应用的试验研究[J]. 黄金科学技术, 2021, 29(4): 564 -572 .
[9] 谭正华,文阳,王李管,李国泰. 基于关键链的地下矿采掘计划编制优化方法[J]. 黄金科学技术, 2021, 29(4): 602 -611 .
[10] 于世波, 杨小聪, 原野, 王志修. 深部区域采矿时序的地压调控卸荷效应研究[J]. 黄金科学技术, 2020, 28(3): 345 -352 .